
Fundamentals of

 Deep
 Learning
DESIGNING NEXT-GENERATION
MACHINE INTELLIGENCE ALGORITHMS

Nikhil Buduma
with contributions by Nicholas Locascio

Nikhil Buduma

Fundamentals of Deep Learning
Designing Next-Generation Machine

Intelligence Algorithms

with contributions by Nicholas Locascio

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92561-4

[TI]

Fundamentals of Deep Learning
by Nikhil Buduma and Nicholas Lacascio

Copyright © 2017 Nikhil Buduma. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Shannon Cutt
Production Editor: Shiny Kalapurakkel
Copyeditor: Sonia Saruba
Proofreader: Amanda Kersey

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2017: First Edition

Revision History for the First Edition
2017-05-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Deep Learning, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Preface. ix

1. The Neural Network. 1
Building Intelligent Machines 1
The Limits of Traditional Computer Programs 2
The Mechanics of Machine Learning 3
The Neuron 7
Expressing Linear Perceptrons as Neurons 8
Feed-Forward Neural Networks 9
Linear Neurons and Their Limitations 12
Sigmoid, Tanh, and ReLU Neurons 13
Softmax Output Layers 15
Looking Forward 15

2. Training Feed-Forward Neural Networks. 17
The Fast-Food Problem 17
Gradient Descent 19
The Delta Rule and Learning Rates 21
Gradient Descent with Sigmoidal Neurons 22
The Backpropagation Algorithm 23
Stochastic and Minibatch Gradient Descent 25
Test Sets, Validation Sets, and Overfitting 27
Preventing Overfitting in Deep Neural Networks 34
Summary 37

3. Implementing Neural Networks in TensorFlow. 39
What Is TensorFlow? 39
How Does TensorFlow Compare to Alternatives? 40

iii

Installing TensorFlow 41
Creating and Manipulating TensorFlow Variables 43
TensorFlow Operations 45
Placeholder Tensors 45
Sessions in TensorFlow 46
Navigating Variable Scopes and Sharing Variables 48
Managing Models over the CPU and GPU 51
Specifying the Logistic Regression Model in TensorFlow 52
Logging and Training the Logistic Regression Model 55
Leveraging TensorBoard to Visualize Computation Graphs and Learning 58
Building a Multilayer Model for MNIST in TensorFlow 59
Summary 62

4. Beyond Gradient Descent. 63
The Challenges with Gradient Descent 63
Local Minima in the Error Surfaces of Deep Networks 64
Model Identifiability 65
How Pesky Are Spurious Local Minima in Deep Networks? 66
Flat Regions in the Error Surface 69
When the Gradient Points in the Wrong Direction 71
Momentum-Based Optimization 74
A Brief View of Second-Order Methods 77
Learning Rate Adaptation 78

AdaGrad—Accumulating Historical Gradients 79
RMSProp—Exponentially Weighted Moving Average of Gradients 80
Adam—Combining Momentum and RMSProp 81

The Philosophy Behind Optimizer Selection 83
Summary 83

5. Convolutional Neural Networks. 85
Neurons in Human Vision 85
The Shortcomings of Feature Selection 86
Vanilla Deep Neural Networks Don’t Scale 89
Filters and Feature Maps 90
Full Description of the Convolutional Layer 95
Max Pooling 98
Full Architectural Description of Convolution Networks 99
Closing the Loop on MNIST with Convolutional Networks 101
Image Preprocessing Pipelines Enable More Robust Models 103
Accelerating Training with Batch Normalization 104
Building a Convolutional Network for CIFAR-10 107
Visualizing Learning in Convolutional Networks 109

iv | Table of Contents

Leveraging Convolutional Filters to Replicate Artistic Styles 113
Learning Convolutional Filters for Other Problem Domains 114
Summary 115

6. Embedding and Representation Learning. 117
Learning Lower-Dimensional Representations 117
Principal Component Analysis 118
Motivating the Autoencoder Architecture 120
Implementing an Autoencoder in TensorFlow 121
Denoising to Force Robust Representations 134
Sparsity in Autoencoders 137
When Context Is More Informative than the Input Vector 140
The Word2Vec Framework 143
Implementing the Skip-Gram Architecture 146
Summary 152

7. Models for Sequence Analysis. 153
Analyzing Variable-Length Inputs 153
Tackling seq2seq with Neural N-Grams 155
Implementing a Part-of-Speech Tagger 156
Dependency Parsing and SyntaxNet 164
Beam Search and Global Normalization 168
A Case for Stateful Deep Learning Models 172
Recurrent Neural Networks 173
The Challenges with Vanishing Gradients 176
Long Short-Term Memory (LSTM) Units 178
TensorFlow Primitives for RNN Models 183
Implementing a Sentiment Analysis Model 185
Solving seq2seq Tasks with Recurrent Neural Networks 189
Augmenting Recurrent Networks with Attention 191
Dissecting a Neural Translation Network 194
Summary 217

8. Memory Augmented Neural Networks. 219
Neural Turing Machines 219
Attention-Based Memory Access 221
NTM Memory Addressing Mechanisms 223
Differentiable Neural Computers 226
Interference-Free Writing in DNCs 229
DNC Memory Reuse 230
Temporal Linking of DNC Writes 231
Understanding the DNC Read Head 232

Table of Contents | v

The DNC Controller Network 232
Visualizing the DNC in Action 234
Implementing the DNC in TensorFlow 237
Teaching a DNC to Read and Comprehend 242
Summary 244

9. Deep Reinforcement Learning. 245
Deep Reinforcement Learning Masters Atari Games 245
What Is Reinforcement Learning? 247
Markov Decision Processes (MDP) 248

Policy 249
Future Return 250
Discounted Future Return 251

Explore Versus Exploit 251
Policy Versus Value Learning 253

Policy Learning via Policy Gradients 254
Pole-Cart with Policy Gradients 254

OpenAI Gym 254
Creating an Agent 255
Building the Model and Optimizer 257
Sampling Actions 257
Keeping Track of History 257
Policy Gradient Main Function 258
PGAgent Performance on Pole-Cart 260

Q-Learning and Deep Q-Networks 261
The Bellman Equation 261
Issues with Value Iteration 262
Approximating the Q-Function 262
Deep Q-Network (DQN) 263
Training DQN 263
Learning Stability 263
Target Q-Network 264
Experience Replay 264
From Q-Function to Policy 264
DQN and the Markov Assumption 265
DQN’s Solution to the Markov Assumption 265
Playing Breakout wth DQN 265
Building Our Architecture 268
Stacking Frames 268
Setting Up Training Operations 268
Updating Our Target Q-Network 269
Implementing Experience Replay 269

vi | Table of Contents

DQN Main Loop 270
DQNAgent Results on Breakout 272

Improving and Moving Beyond DQN 273
Deep Recurrent Q-Networks (DRQN) 273
Asynchronous Advantage Actor-Critic Agent (A3C) 274
UNsupervised REinforcement and Auxiliary Learning (UNREAL) 275

Summary 276

Index. 277

Table of Contents | vii

Preface

With the reinvigoration of neural networks in the 2000s, deep learning has become
an extremely active area of research that is paving the way for modern machine learn‐
ing. This book uses exposition and examples to help you understand major concepts
in this complicated field. Large companies such as Google, Microsoft, and Facebook
have taken notice and are actively growing in-house deep learning teams. For the rest
of us, deep learning is still a pretty complex and difficult subject to grasp. Research
papers are filled to the brim with jargon, and scattered online tutorials do little to
help build a strong intuition for why and how deep learning practitioners approach
problems. Our goal is to bridge this gap.

Prerequisites and Objectives
This booked is aimed an audience with a basic operating understanding of calculus,
matrices, and Python programming. Approaching this material without this back‐
ground is possible, but likely to be more challenging. Background in linear algebra
may also be helpful in navigating certain sections of mathematical exposition.

By the end of the book, we hope that our readers will be left with an intuition for how
to approach problems using deep learning, the historical context for modern deep
learning approaches, and a familiarity with implementing deep learning algorithms
using the TensorFlow open source library.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

ix

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/darksigma/Fundamentals-of-Deep-Learning-Book.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Fundamentals of Deep Learning by
Nikhil Buduma and Nicholas Locascio (O’Reilly). Copyright 2017 Nikhil Buduma
and Nicholas Locascio, 978-1-491-92561-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

x | Preface

https://github.com/darksigma/Fundamentals-of-Deep-Learning-Book
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements
We’d like to thank several people who have been instrumental in the completion of
this text. We’d like to start by acknowledging Mostafa Samir and Surya Bhupatiraju,
who contributed heavily to the content of Chapters 7 and 8. We also appreciate the
contributions of Mohamed (Hassan) Kane and Anish Athalye, who worked on early
versions of the code examples in this book’s Github repository.

This book would not have been possible without the never-ending support and
expertise of our editor, Shannon Cutt. We’d also like to appreciate the commentary
provided by our reviewers, Isaac Hodes, David Andrzejewski, and Aaron Schu‐
macher, who provided thoughtful, in-depth commentary on the original drafts of the
text. Finally, we are thankful for all of the insight provided by our friends and family

Preface | xi

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

members, including Jeff Dean, Nithin Buduma, Venkat Buduma, and William, Jack,
as we finalized the manuscript of the text.

xii | Preface

1 Kuhn, Deanna, et al. Handbook of Child Psychology. Vol. 2, Cognition, Perception, and Language. Wiley, 1998.

CHAPTER 1

The Neural Network

Building Intelligent Machines
The brain is the most incredible organ in the human body. It dictates the way we per‐
ceive every sight, sound, smell, taste, and touch. It enables us to store memories,
experience emotions, and even dream. Without it, we would be primitive organ‐
isms, incapable of anything other than the simplest of reflexes. The brain is, inher‐
ently, what makes us intelligent.

The infant brain only weighs a single pound, but somehow it solves problems that
even our biggest, most powerful supercomputers find impossible. Within a matter of
months after birth, infants can recognize the faces of their parents, discern discrete
objects from their backgrounds, and even tell apart voices. Within a year, they’ve
already developed an intuition for natural physics, can track objects even when they
become partially or completely blocked, and can associate sounds with specific mean‐
ings. And by early childhood, they have a sophisticated understanding of grammar
and thousands of words in their vocabularies.1

For decades, we’ve dreamed of building intelligent machines with brains like ours—
robotic assistants to clean our homes, cars that drive themselves, microscopes that
automatically detect diseases. But building these artificially intelligent machines
requires us to solve some of the most complex computational problems we have ever
grappled with; problems that our brains can already solve in a manner of microsec‐
onds. To tackle these problems, we’ll have to develop a radically different way of pro‐
gramming a computer using techniques largely developed over the past decade. This

1

2 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning Applied to Document Recognition”
Proceedings of the IEEE, 86(11):2278-2324, November 1998.

is an extremely active field of artificial computer intelligence often referred to as deep
learning.

The Limits of Traditional Computer Programs
Why exactly are certain problems so difficult for computers to solve? Well, it turns
out that traditional computer programs are designed to be very good at two things: 1)
performing arithmetic really fast and 2) explicitly following a list of instructions. So if
you want to do some heavy financial number crunching, you’re in luck. Traditional
computer programs can do the trick. But let’s say we want to do something slightly
more interesting, like write a program to automatically read someone’s handwriting.
Figure 1-1 will serve as a starting point.

Figure 1-1. Image from MNIST handwritten digit dataset2

Although every digit in Figure 1-1 is written in a slightly different way, we can easily
recognize every digit in the first row as a zero, every digit in the second row as a one,
etc. Let’s try to write a computer program to crack this task. What rules could we use
to tell one digit from another?

Well, we can start simple! For example, we might state that we have a zero if our
image only has a single, closed loop. All the examples in Figure 1-1 seem to fit this
bill, but this isn’t really a sufficient condition. What if someone doesn’t perfectly close

2 | Chapter 1: The Neural Network

the loop on their zero? And, as in Figure 1-2, how do you distinguish a messy zero
from a six?

Figure 1-2. A zero that’s algorithmically difficult to distinguish from a six

You could potentially establish some sort of cutoff for the distance between the start‐
ing point of the loop and the ending point, but it’s not exactly clear where we should
be drawing the line. But this dilemma is only the beginning of our worries. How do
we distinguish between threes and fives? Or between fours and nines? We can add
more and more rules, or features, through careful observation and months of trial and
error, but it’s quite clear that this isn’t going to be an easy process.

Many other classes of problems fall into this same category: object recognition,
speech comprehension, automated translation, etc. We don’t know what program to
write because we don’t know how it’s done by our brains. And even if we did know
how to do it, the program might be horrendously complicated.

The Mechanics of Machine Learning
To tackle these classes of problems, we’ll have to use a very different kind of
approach. A lot of the things we learn in school growing up have a lot in common
with traditional computer programs. We learn how to multiply numbers, solve equa‐
tions, and take derivatives by internalizing a set of instructions. But the things we
learn at an extremely early age, the things we find most natural, are learned by exam‐
ple, not by formula.

For instance, when we were two years old, our parents didn’t teach us how to recog‐
nize a dog by measuring the shape of its nose or the contours of its body. We learned
to recognize a dog by being shown multiple examples and being corrected when we
made the wrong guess. In other words, when we were born, our brains provided us
with a model that described how we would be able to see the world. As we grew up,
that model would take in our sensory inputs and make a guess about what we were

The Mechanics of Machine Learning | 3

experiencing. If that guess was confirmed by our parents, our model would be rein‐
forced. If our parents said we were wrong, we’d modify our model to incorporate this
new information. Over our lifetime, our model becomes more and more accurate as
we assimilate more and more examples. Obviously all of this happens subconsciously,
without us even realizing it, but we can use this to our advantage nonetheless.

Deep learning is a subset of a more general field of artificial intelligence
called machine learning, which is predicated on this idea of learning from example. In
machine learning, instead of teaching a computer a massive list of rules to solve the
problem, we give it a model with which it can evaluate examples, and a small set of
instructions to modify the model when it makes a mistake. We expect that, over
time, a well-suited model would be able to solve the problem extremely accurately.

Let’s be a little bit more rigorous about what this means so we can formulate this idea
mathematically. Let’s define our model to be a function h �, θ . The input x is an
example expressed in vector form. For example, if x were a grayscale image, the vec‐
tor’s components would be pixel intensities at each position, as shown in Figure 1-3.

Figure 1-3. The process of vectorizing an image for a machine learning algorithm

The input θ is a vector of the parameters that our model uses. Our machine learning
program tries to perfect the values of these parameters as it is exposed to more and
more examples. We’ll see this in action and in more detail in Chapter 2.

To develop a more intuitive understanding for machine learning models, let’s walk
through a quick example. Let’s say we wanted to determine how to predict exam per‐
formance based on the number of hours of sleep we get and the number of hours we
study the previous day. We collect a lot of data, and for each data point � = x1 x2

T,
we record the number of hours of sleep we got (x1), the number of hours we spent
studying (x2), and whether we performed above or below the class average. Our goal,
then, might be to learn a model h �, θ with parameter vector θ = θ0 θ1 θ2

T such
that:

4 | Chapter 1: The Neural Network

3 Rosenblatt, Frank. “The perceptron: A probabilistic model for information storage and organization in the
brain.” Psychological Review 65.6 (1958): 386.

 h �, θ =

−1 if �T ·
θ1

θ2
+ θ0 < 0

1 if �T ·
θ1

θ2
+ θ0 ≥ 0

In other words, we guess that the blueprint for our model h �, θ is as described
above (geometrically, this particular blueprint describes a linear classifier that divides
the coordinate plane into two halves). Then, we want to learn a parameter vec‐
tor θ such that our model makes the right predictions (−1 if we perform below aver‐
age, and 1 otherwise) given an input example x. This model is called a linear
perceptron, and it’s a model that’s been used since the 1950s.3 Let’s assume our data is
as shown in Figure 1-4.

Figure 1-4. Sample data for our exam predictor algorithm and a potential classifier

The Mechanics of Machine Learning | 5

4 Bubeck, Sébastien. “Convex optimization: Algorithms and complexity.” Foundations and Trends® in Machine
Learning. 8.3-4 (2015): 231-357.

Then it turns out, by selecting θ = −24 3 4 T, our machine learning model makes
the correct prediction on every data point:

 h �, θ =
−1 if 3x1 + 4x2 − 24 < 0

1 if 3x1 + 4x2 − 24 ≥ 0

An optimal parameter vector θ positions the classifier so that we make as many cor‐
rect predictions as possible. In most cases, there are many (or even infinitely
many) possible choices for θ that are optimal. Fortunately for us, most of the time
these alternatives are so close to one another that the difference is negligible. If this is
not the case, we may want to collect more data to narrow our choice of θ.

While the setup seems reasonable, there are still some pretty significant questions
that remain. First off, how do we even come up with an optimal value for the parame‐
ter vector θ in the first place? Solving this problem requires a technique commonly
known as optimization. An optimizer aims to maximize the performance of a
machine learning model by iteratively tweaking its parameters until the error is mini‐
mized. We’ll begin to tackle this question of learning parameter vectors in more detail
in Chapter 2, when we describe the process of gradient descent.4 In later chapters, we’ll
try to find ways to make this process even more efficient.

Second, it’s quite clear that this particular model (the linear perceptron model) is
quite limited in the relationships it can learn. For example, the distributions of data
shown in Figure 1-5 cannot be described well by a linear perceptron.

Figure 1-5. As our data takes on more complex forms, we need more complex models to
describe them

But these situations are only the tip of the iceberg. As we move on to much more
complex problems, such as object recognition and text analysis, our data becomes
extremely high dimensional, and the relationships we want to capture become highly

6 | Chapter 1: The Neural Network

5 Restak, Richard M. and David Grubin. The Secret Life of the Brain. Joseph Henry Press, 2001.

nonlinear. To accommodate this complexity, recent research in machine learning has
attempted to build models that resemble the structures utilized by our brains. It’s
essentially this body of research, commonly referred to as deep learning, that has had
spectacular success in tackling problems in computer vision and natural language
processing. These algorithms not only far surpass other kinds of machine learning
algorithms, but also rival (or even exceed!) the accuracies achieved by humans.

The Neuron
The foundational unit of the human brain is the neuron. A tiny piece of the brain,
about the size of grain of rice, contains over 10,000 neurons, each of which forms an
average of 6,000 connections with other neurons.5 It’s this massive biological network
that enables us to experience the world around us. Our goal in this section will be to
use this natural structure to build machine learning models that solve problems in an
analogous way.

At its core, the neuron is optimized to receive information from other neurons, pro‐
cess this information in a unique way, and send its result to other cells. This process is
summarized in Figure 1-6. The neuron receives its inputs along antennae-like struc‐
tures called dendrites. Each of these incoming connections is dynamically strength‐
ened or weakened based on how often it is used (this is how we learn new concepts!),
and it’s the strength of each connection that determines the contribution of the input
to the neuron’s output. After being weighted by the strength of their respective con‐
nections, the inputs are summed together in the cell body. This sum is then trans‐
formed into a new signal that’s propagated along the cell’s axon and sent off to other
neurons.

Figure 1-6. A functional description of a biological neuron’s structure

The Neuron | 7

6 McCulloch, Warren S., and Walter Pitts. “A logical calculus of the ideas immanent in nervous activity.” The
Bulletin of Mathematical Biophysics. 5.4 (1943): 115-133.

We can translate this functional understanding of the neurons in our brain into an
artificial model that we can represent on our computer. Such a model is described
in Figure 1-7, leveraging the approach first pioneered in 1943 by Warren S. McCul‐
loch and Walter H. Pitts.6 Just as in biological neurons, our artificial neuron takes in
some number of inputs, x1, x2, . . . , xn, each of which is multiplied by a specific
weight, w1, w2, . . . , wn. These weighted inputs are, as before, summed together to
produce the logit of the neuron, z = ∑i = 0

n wixi. In many cases, the logit also includes
a bias, which is a constant (not shown in the figure). The logit is then passed through
a function f to produce the output y = f z . This output can be transmitted to other
neurons.

Figure 1-7. Schematic for a neuron in an artificial neural net

We’ll conclude our mathematical discussion of the artificial neuron by re-expressing
its functionality in vector form. Let’s reformulate the inputs as a vector x = [x1 x2 ... xn]
and the weights of the neuron as w = [w1 w2 ... wn]. Then we can re-express the output
of the neuron as y = f � · � + b , where b is the bias term. In other words, we can
compute the output by performing the dot product of the input and weight vectors,
adding in the bias term to produce the logit, and then applying the transformation
function. While this seems like a trivial reformulation, thinking about neurons as a
series of vector manipulations will be crucial to how we implement them in software
later in this book.

Expressing Linear Perceptrons as Neurons
In “The Mechanics of Machine Learning” on page 3, we talked about using machine
learning models to capture the relationship between success on exams and time spent
studying and sleeping. To tackle this problem, we constructed a linear perceptron
classifier that divided the Cartesian coordinate plane into two halves:

8 | Chapter 1: The Neural Network

 h �, θ =
−1 if 3x1 + 4x2 − 24 < 0

1 if 3x1 + 4x2 − 24 ≥ 0

As shown in Figure 1-4, this is an optimal choice for θ because it correctly classifies
every sample in our dataset. Here, we show that our model h is easily using a neuron.
Consider the neuron depicted in Figure 1-8. The neuron has two inputs, a bias, and
uses the function:

 f z =
−1 if z < 0
1 if z ≥ 0

It’s very easy to show that our linear perceptron and the neuronal model are perfectly
equivalent. And in general, it’s quite simple to show that singular neurons are strictly
more expressive than linear perceptrons. In other words, every linear perceptron can
be expressed as a single neuron, but single neurons can also express models that can‐
not be expressed by any linear perceptron.

Figure 1-8. Expressing our exam performance perceptron as a neuron

Feed-Forward Neural Networks
Although single neurons are more powerful than linear perceptrons, they’re not
nearly expressive enough to solve complicated learning problems. There’s a reason
our brain is made of more than one neuron. For example, it is impossible for a single
neuron to differentiate handwritten digits. So to tackle much more complicated tasks,
we’ll have to take our machine learning model even further.

The neurons in the human brain are organized in layers. In fact, the human cerebral
cortex (the structure responsible for most of human intelligence) is made up of six

Feed-Forward Neural Networks | 9

7 Mountcastle, Vernon B. “Modality and topographic properties of single neurons of cat’s somatic sensory cor‐
tex.” Journal of Neurophysiology 20.4 (1957): 408-434.

layers.7 Information flows from one layer to another until sensory input is converted
into conceptual understanding. For example, the bottommost layer of the visual cor‐
tex receives raw visual data from the eyes. This information is processed by each layer
and passed on to the next until, in the sixth layer, we conclude whether we are look‐
ing at a cat, or a soda can, or an airplane. Figure 1-9 shows a more simplified version
of these layers.

Figure 1-9. A simple example of a feed-forward neural network with three layers (input,
one hidden, and output) and three neurons per layer

Borrowing from these concepts, we can construct an artificial neural network. A neu‐
ral network comes about when we start hooking up neurons to each other, the input
data, and to the output nodes, which correspond to the network’s answer to a learn‐
ing problem. Figure 1-9 demonstrates a simple example of an artificial neural net‐
work, similar to the architecture described in McCulloch and Pitt’s work in 1943. The

10 | Chapter 1: The Neural Network

bottom layer of the network pulls in the input data. The top layer of neurons (output
nodes) computes our final answer. The middle layer(s) of neurons are called the hid‐
den layers, and we let wi, j

k be the weight of the connection between the ith neuron in
the kth layer with the jth neuron in the k + 1st layer. These weights constitute our
parameter vector, θ, and just as before, our ability to solve problems with neural net‐
works depends on finding the optimal values to plug into θ.

We note that in this example, connections only traverse from a lower layer to a higher
layer. There are no connections between neurons in the same layer, and there are no
connections that transmit data from a higher layer to a lower layer. These neural net‐
works are called feed-forward networks, and we start by discussing these networks
because they are the simplest to analyze. We present this analysis (specifically, the
process of selecting the optimal values for the weights) in Chapter 2. More compli‐
cated connectivities will be addressed in later chapters.

In the final sections, we’ll discuss the major types of layers that are utilized in feed-
forward neural networks. But before we proceed, here’s a couple of important notes
to keep in mind:

1. As we mentioned, the layers of neurons that lie sandwiched between the first
layer of neurons (input layer) and the last layer of neurons (output layer) are
called the hidden layers. This is where most of the magic is happening when the
neural net tries to solve problems. Whereas (as in the handwritten digit example)
we would previously have to spend a lot of time identifying useful features, the
hidden layers automate this process for us. Oftentimes, taking a look at the activi‐
ties of hidden layers can tell you a lot about the features the network has auto‐
matically learned to extract from the data.

2. Although in this example every layer has the same number of neurons, this is
neither necessary nor recommended. More often than not, hidden layers have
fewer neurons than the input layer to force the network to learn compressed rep‐
resentations of the original input. For example, while our eyes obtain raw pixel
values from our surroundings, our brain thinks in terms of edges and contours.
This is because the hidden layers of biological neurons in our brain force us to
come up with better representations for everything we perceive.

3. It is not required that every neuron has its output connected to the inputs of all
neurons in the next layer. In fact, selecting which neurons to connect to which
other neurons in the next layer is an art that comes from experience. We’ll dis‐
cuss this issue in more depth as we work through various examples of neural net‐
works.

4. The inputs and outputs are vectorized representations. For example, you might
imagine a neural network where the inputs are the individual pixel RGB values in
an image represented as a vector (refer to Figure 1-3). The last layer might have
two neurons that correspond to the answer to our problem: 1, 0 if the image

Feed-Forward Neural Networks | 11

contains a dog, 0, 1 if the image contains a cat, 1, 1 if it contains both,
and 0, 0 if it contains neither.

We’ll also observe that, similarly to our reformulation for the neuron, we can also
mathematically express a neural network as a series of vector and matrix operations.
Let’s consider the input to the ith layer of the network to be a vector x = [x1 x2 ... xn].
We’d like to find the vector y = [y1 y2 ... ym] produced by propagating the input
through the neurons. We can express this as a simple matrix multiply if we construct
a weight matrix � of size n × m and a bias vector of size m. In this matrix, each col‐
umn corresponds to a neuron, where the jth element of the column corresponds to
the weight of the connection pulling in the jth element of the input. In other words, y
= ƒ(WTx + b), where the transformation function is applied to the vector element-
wise. This reformulation will become all the more critical as we begin to implement
these networks in software.

Linear Neurons and Their Limitations
Most neuron types are defined by the function f they apply to their logit z. Let’s first
consider layers of neurons that use a linear function in the form of f z = az + b. For
example, a neuron that attempts to estimate a cost of a meal in a fast-food restaurant
would use a linear neuron where a = 1 and b = 0. In other words, using f z = z and
weights equal to the price of each item, the linear neuron in Figure 1-10 would take in
some ordered triple of servings of burgers, fries, and sodas and output the price of the
combination.

Figure 1-10. An example of a linear neuron

Linear neurons are easy to compute with, but they run into serious limitations. In
fact, it can be shown that any feed-forward neural network consisting of only linear

12 | Chapter 1: The Neural Network

neurons can be expressed as a network with no hidden layers. This is problematic
because, as we discussed before, hidden layers are what enable us to learn important
features from the input data. In other words, in order to learn complex relationships,
we need to use neurons that employ some sort of nonlinearity.

Sigmoid, Tanh, and ReLU Neurons
There are three major types of neurons that are used in practice that introduce nonli‐
nearities in their computations. The first of these is the sigmoid neuron, which uses
the function:

 f z = 1

1 + e−z

Intuitively, this means that when the logit is very small, the output of a logistic neu‐
ron is very close to 0. When the logit is very large, the output of the logistic neuron is
close to 1. In-between these two extremes, the neuron assumes an S-shape, as shown
in Figure 1-11.

Figure 1-11. The output of a sigmoid neuron as z varies

Tanh neurons use a similar kind of S-shaped nonlinearity, but instead of ranging from
0 to 1, the output of tanh neurons range from −1 to 1. As one would expect, they
use f z = tanh z . The resulting relationship between the output y and the logit z is
described by Figure 1-12. When S-shaped nonlinearities are used, the tanh neuron is
often preferred over the sigmoid neuron because it is zero-centered.

Sigmoid, Tanh, and ReLU Neurons | 13

Figure 1-12. The output of a tanh neuron as z varies

A different kind of nonlinearity is used by the restricted linear unit (ReLU) neuron. It
uses the function f z = max 0, z , resulting in a characteristic hockey-stick-shaped
response, as shown in Figure 1-13.

Figure 1-13. The output of a ReLU neuron as z varies

14 | Chapter 1: The Neural Network

8 Nair, Vinod, and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann Machines” Pro‐
ceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.

The ReLU has recently become the neuron of choice for many tasks (especially in
computer vision) for a number of reasons, despite some drawbacks.8 We’ll discuss
these reasons in Chapter 5, as well as strategies to combat the potential pitfalls.

Softmax Output Layers
Oftentimes, we want our output vector to be a probability distribution over a set of
mutually exclusive labels. For example, let’s say we want to build a neural network to
recognize handwritten digits from the MNIST dataset. Each label (0 through 9) is
mutually exclusive, but it’s unlikely that we will be able to recognize digits with 100%
confidence. Using a probability distribution gives us a better idea of how confident
we are in our predictions. As a result, the desired output vector is of the form below,
where ∑i = 0

9 pi = 1:

 p0 p1 p2 p3 . . . p9

This is achieved by using a special output layer called a softmax layer. Unlike in other
kinds of layers, the output of a neuron in a softmax layer depends on the outputs of
all the other neurons in its layer. This is because we require the sum of all the outputs
to be equal to 1. Letting zi be the logit of the ith softmax neuron, we can achieve this
normalization by setting its output to:

 yi = e
zi

∑ j e
z j

A strong prediction would have a single entry in the vector close to 1, while the
remaining entries were close to 0. A weak prediction would have multiple possible
labels that are more or less equally likely.

Looking Forward
In this chapter, we’ve built a basic intuition for machine learning and neural net‐
works. We’ve talked about the basic structure of a neuron, how feed-forward neural
networks work, and the importance of nonlinearity in tackling complex learning
problems. In the next chapter, we will begin to build the mathematical background
necessary to train a neural network to solve problems. Specifically, we will talk about
finding optimal parameter vectors, best practices while training neural networks, and
major challenges. In future chapters, we will take these foundational ideas to build
more specialized neural architectures.

Softmax Output Layers | 15

CHAPTER 2

Training Feed-Forward Neural Networks

The Fast-Food Problem
We’re beginning to understand how we can tackle some interesting problems using
deep learning, but one big question still remains: how exactly do we figure out what
the parameter vectors (the weights for all of the connections in our neural network)
should be? This is accomplished by a process commonly referred to as training (see
Figure 2-1). During training, we show the neural net a large number of training
examples and iteratively modify the weights to minimize the errors we make on the
training examples. After enough examples, we expect that our neural network will be
quite effective at solving the task it’s been trained to do.

Figure 2-1. This is the neuron we want to train for the fast-food problem

17

Let’s continue with the example we mentioned in the previous chapter involving a lin‐
ear neuron. As a brief review, every single day, we purchase a restaurant meal consist‐
ing of burgers, fries, and sodas. We buy some number of servings for each item. We
want to be able to predict how much a meal is going to cost us, but the items don’t
have price tags. The only thing the cashier will tell us is the total price of the meal. We
want to train a single linear neuron to solve this problem. How do we do it?

One idea is to be intelligent about picking our training cases. For one meal we could
buy only a single serving of burgers, for another we could only buy a single serving of
fries, and then for our last meal we could buy a single serving of soda. In general,
intelligently selecting training examples is a very good idea. There’s lots of research
that shows that by engineering a clever training set, you can make your neural net‐
work a lot more effective. The issue with using this approach alone is that in real sit‐
uations, it rarely ever gets you close to the solution. For example, there’s no clear
analog of this strategy in image recognition. It’s just not a practical solution.

Instead, we try to motivate a solution that works well in general. Let’s say we have a
large set of training examples. Then we can calculate what the neural network will
output on the ith training example using the simple formula in the diagram. We want
to train the neuron so that we pick the optimal weights possible—the weights that
minimize the errors we make on the training examples. In this case, let’s say we want
to minimize the square error over all of the training examples that we encounter.
More formally, if we know that t i is the true answer for the ith training example
and y i is the value computed by the neural network, we want to minimize the value
of the error function E:

 E = 1
2 ∑i t i − y i 2

The squared error is zero when our model makes a perfectly correct prediction on
every training example. Moreover, the closer E is to 0, the better our model is. As a
result, our goal will be to select our parameter vector θ (the values for all the weights
in our model) such that E is as close to 0 as possible.

Now at this point you might be wondering why we need to bother ourselves with
error functions when we can treat this problem as a system of equations. After all, we
have a bunch of unknowns (weights) and we have a set of equations (one for each
training example). That would automatically give us an error of 0, assuming that we
have a consistent set of training examples.

That’s a smart observation, but the insight unfortunately doesn’t generalize well.
Remember that although we’re using a linear neuron here, linear neurons aren’t used
very much in practice because they’re constrained in what they can learn. And the
moment we start using nonlinear neurons like the sigmoidal, tanh, or ReLU neurons

18 | Chapter 2: Training Feed-Forward Neural Networks

we talked about at the end of the previous chapter, we can no longer set up a system
of equations! Clearly we need a better strategy to tackle the training process.

Gradient Descent
Let’s visualize how we might minimize the squared error over all of the training
examples by simplifying the problem. Let’s say our linear neuron only has two inputs
(and thus only two weights, w1 and w2). Then we can imagine a three-dimensional
space where the horizontal dimensions correspond to the weights w1 and w2, and the
vertical dimension corresponds to the value of the error function E. In this space,
points in the horizontal plane correspond to different settings of the weights, and the
height at those points corresponds to the incurred error. If we consider the errors we
make over all possible weights, we get a surface in this three-dimensional space, in
particular, a quadratic bowl as shown in Figure 2-2.

Figure 2-2. The quadratic error surface for a linear neuron

Gradient Descent | 19

1 Rosenbloom, P. “The method of steepest descent.” Proceedings of Symposia in Applied Mathematics. Vol. 6.
1956.

We can also conveniently visualize this surface as a set of elliptical contours, where
the minimum error is at the center of the ellipses. In this setup, we are working in a
two-dimensional plane where the dimensions correspond to the two weights. Con‐
tours correspond to settings of w1 and w2 that evaluate to the same value of E. The
closer the contours are to each other, the steeper the slope. In fact, it turns out that
the direction of the steepest descent is always perpendicular to the contours. This
direction is expressed as a vector known as the gradient.

Now we can develop a high-level strategy for how to find the values of the weights
that minimizes the error function. Suppose we randomly initialize the weights of our
network so we find ourselves somewhere on the horizontal plane. By evaluating the
gradient at our current position, we can find the direction of steepest descent, and we
can take a step in that direction. Then we’ll find ourselves at a new position that’s
closer to the minimum than we were before. We can reevaluate the direction of steep‐
est descent by taking the gradient at this new position and taking a step in this new
direction. It’s easy to see that, as shown in Figure 2-3, following this strategy will
eventually get us to the point of minimum error. This algorithm is known as gradient
descent, and we’ll use it to tackle the problem of training individual neurons and the
more general challenge of training entire networks.1

Figure 2-3. Visualizing the error surface as a set of contours

20 | Chapter 2: Training Feed-Forward Neural Networks

The Delta Rule and Learning Rates
Before we derive the exact algorithm for training our fast-food neuron, a quick note
on hyperparameters. In addition to the weight parameters defined in our neural net‐
work, learning algorithms also require a couple of additional parameters to carry out
the training process. One of these so-called hyperparameters is the learning rate.

In practice, at each step of moving perpendicular to the contour, we need to deter‐
mine how far we want to walk before recalculating our new direction. This distance
needs to depend on the steepness of the surface. Why? The closer we are to the mini‐
mum, the shorter we want to step forward. We know we are close to the minimum,
because the surface is a lot flatter, so we can use the steepness as an indicator of how
close we are to the minimum. However, if our error surface is rather mellow, training
can potentially take a large amount of time. As a result, we often multiply the gradient
by a factor �, the learning rate. Picking the learning rate is a hard problem
(Figure 2-4). As we just discussed, if we pick a learning rate that’s too small, we risk
taking too long during the training process. But if we pick a learning rate that’s too
big, we’ll mostly likely start diverging away from the minimum. In Chapter 3, we’ll
learn about various optimization techniques that utilize adaptive learning rates to
automate the process of selecting learning rates.

Figure 2-4. Convergence is difficult when our learning rate is too large

Now, we are finally ready to derive the delta rule for training our linear neuron. In
order to calculate how to change each weight, we evaluate the gradient, which is
essentially the partial derivative of the error function with respect to each of the
weights. In other words, we want:

The Delta Rule and Learning Rates | 21

 Δwk = − � ∂E
∂wk

 = − � ∂
∂wk

1
2 ∑i t i − y i 2

 = ∑i� t i − y i ∂yi
∂wk

 = ∑i�xk
i t i − y i

Applying this method of changing the weights at every iteration, we are finally able to
utilize gradient descent.

Gradient Descent with Sigmoidal Neurons
In this section and the next, we will deal with training neurons and neural networks
that utilize nonlinearities. We use the sigmoidal neuron as a model, and leave the der‐
ivations for other nonlinear neurons as an exercise for the reader. For simplicity, we
assume that the neurons do not use a bias term, although our analysis easily extends
to this case. We merely need to assume that the bias is a weight on an incoming con‐
nection whose input value is always one.

Let’s recall the mechanism by which logistic neurons compute their output value
from their inputs:

 z = ∑k wkxk

 y = 1

1 + e−z

The neuron computes the weighted sum of its inputs, the logit z. It then feeds its logit
into the input function to compute y, its final output. Fortunately for us, these func‐
tions have very nice derivatives, which makes learning easy! For learning, we want to
compute the gradient of the error function with respect to the weights. To do so, we
start by taking the derivative of the logit with respect to the inputs and the weights:

 ∂z
∂wk

= xk

 ∂z
∂xk

= wk

Also, quite surprisingly, the derivative of the output with respect to the logit is quite
simple if you express it in terms of the output:

 dy
dz = e−z

1 + e−z 2

22 | Chapter 2: Training Feed-Forward Neural Networks

2 Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by back-
propagating errors.” Cognitive Modeling 5.3 (1988): 1.

 = 1

1 + e−z
e−z

1 + e−z

 = 1

1 + e−z 1 − 1

1 + e−z

 = y 1 − y

We then use the chain rule to get the derivative of the output with respect to each
weight:

 ∂y
∂wk

= dy
dz

∂z
∂wk

= xky 1 − y

Putting all of this together, we can now compute the derivative of the error function
with respect to each weight:

 ∂E
∂wk

= ∑i
∂E

∂y i
∂y i

∂wk
= − ∑i xk

i y i 1 − y i t i − y i

Thus, the final rule for modifying the weights becomes:

 Δwk = ∑i�xk
i y i 1 − y i t i − y i

As you may notice, the new modification rule is just like the delta rule, except with
extra multiplicative terms included to account for the logistic component of the sig‐
moidal neuron.

The Backpropagation Algorithm
Now we’re finally ready to tackle the problem of training multilayer neural networks
(instead of just single neurons). To accomplish this task, we’ll use an approach known
as backpropagation, pioneered by David E. Rumelhart, Geoffrey E. Hinton, and Ron‐
ald J. Williams in 1986.2 So what’s the idea behind backpropagation? We don’t know
what the hidden units ought to be doing, but what we can do is compute how fast the
error changes as we change a hidden activity. From there, we can figure out how fast
the error changes when we change the weight of an individual connection. Essen‐
tially, we’ll be trying to find the path of steepest descent! The only catch is that we’re
going to be working in an extremely high-dimensional space. We start by calculating
the error derivatives with respect to a single training example.

Each hidden unit can affect many output units. Thus, we’ll have to combine many
separate effects on the error in an informative way. Our strategy will be one of
dynamic programming. Once we have the error derivatives for one layer of hidden

The Backpropagation Algorithm | 23

units, we’ll use them to compute the error derivatives for the activities of the layer
below. And once we find the error derivatives for the activities of the hidden units, it’s
quite easy to get the error derivatives for the weights leading into a hidden unit. We’ll
redefine some notation for ease of discussion and refer to the Figure 2-5.

Figure 2-5. Reference diagram for the derivation of the backpropagation algorithm

The subscript we use will refer to the layer of the neuron. The symbol y will refer to
the activity of a neuron, as usual. Similarly, the symbol z will refer to the logit of the
neuron. We start by taking a look at the base case of the dynamic programming prob‐
lem. Specifically, we calculate the error function derivatives at the output layer:

 E = 1
2 ∑ j ∈ output t j − y j

2 ∂E
∂yj

= − t j − y j

Now we tackle the inductive step. Let’s presume we have the error derivatives for
layer j. We now aim to calculate the error derivatives for the layer below it, layer i. To
do so, we must accumulate information about how the output of a neuron in
layer i affects the logits of every neuron in layer j. This can be done as follows, using

24 | Chapter 2: Training Feed-Forward Neural Networks

the fact that the partial derivative of the logit with respect to the incoming output
data from the layer beneath is merely the weight of the connection wi j:

 ∂E
∂yi

= ∑ j
∂E
∂z j

dz j
dyi

= ∑ j wi j
∂E
∂z j

Furthermore, we observe the following:

 ∂E
∂z j

= ∂E
∂yj

dyj
dz j

= y j 1 − y j
∂E
∂yj

Combining these two together, we can finally express the error derivatives of layer i in
terms of the error derivatives of layer j:

 ∂E
∂yi

= ∑ j wi jy j 1 − y j
∂E
∂yj

Then once we’ve gone through the whole dynamic programming routine, having fil‐
led up the table appropriately with all of our partial derivatives (of the error function
with respect to the hidden unit activities), we can then determine how the error
changes with respect to the weights. This gives us how to modify the weights after
each training example:

 ∂E
∂wij

=
∂z j

∂wij

∂E
∂z j

= yiy j 1 − y j
∂E
∂yj

Finally, to complete the algorithm, just as before, we merely sum up the partial deriv‐
atives over all the training examples in our dataset. This gives us the following modi‐
fication formula:

 Δwi j = − ∑k ∈ dataset�yi
k y j

k 1 − y j
k ∂E k

∂yj
k

This completes our description of the backpropagation algorithm!

Stochastic and Minibatch Gradient Descent
In the algorithms we’ve described in “The Backpropagation Algorithm” on page 23,
we’ve been using a version of gradient descent known as batch gradient descent. The
idea behind batch gradient descent is that we use our entire dataset to compute the
error surface and then follow the gradient to take the path of steepest descent. For a
simple quadratic error surface, this works quite well. But in most cases, our error sur‐
face may be a lot more complicated. Let’s consider the scenario in Figure 2-6 for illus‐
tration.

Stochastic and Minibatch Gradient Descent | 25

Figure 2-6. Batch gradient descent is sensitive to saddle points, which can lead to prema‐
ture convergence

We only have a single weight, and we use random initialization and batch gradient
descent to find its optimal setting. The error surface, however, has a flat region (also
known as saddle point in high-dimensional spaces), and if we get unlucky, we might
find ourselves getting stuck while performing gradient descent.

Another potential approach is stochastic gradient descent (SGD), where at each itera‐
tion, our error surface is estimated only with respect to a single example. This
approach is illustrated by Figure 2-7, where instead of a single static error surface, our
error surface is dynamic. As a result, descending on this stochastic surface signifi‐
cantly improves our ability to navigate flat regions.

Figure 2-7. The stochastic error surface fluctuates with respect to the batch error surface,
enabling saddle point avoidance

26 | Chapter 2: Training Feed-Forward Neural Networks

The major pitfall of stochastic gradient descent, however, is that looking at the error
incurred one example at a time may not be a good enough approximation of the error
surface. This, in turn, could potentially make gradient descent take a significant
amount of time. One way to combat this problem is using mini-batch gradient
descent. In mini-batch gradient descent, at every iteration, we compute the error sur‐
face with respect to some subset of the total dataset (instead of just a single example).
This subset is called a minibatch, and in addition to the learning rate, minibatch size
is another hyperparameter. Minibatches strike a balance between the efficiency of
batch gradient descent and the local-minima avoidance afforded by stochastic gradi‐
ent descent. In the context of backpropagation, our weight update step becomes:

 Δwi j = − ∑k ∈ minibatch�yi
k y j

k 1 − y j
k ∂E k

∂yj
k

This is identical to what we derived in the previous section, but instead of summing
over all the examples in the dataset, we sum over the examples in the current mini‐
batch.

Test Sets, Validation Sets, and Overfitting
One of the major issues with artificial neural networks is that the models are quite
complicated. For example, let’s consider a neural network that’s pulling data from an
image from the MNIST database (28 x 28 pixels), feeds into two hidden layers with 30
neurons, and finally reaches a softmax layer of 10 neurons. The total number of
parameters in the network is nearly 25,000. This can be quite problematic, and to
understand why, let’s consider a new toy example, illustrated in Figure 2-8.

Test Sets, Validation Sets, and Overfitting | 27

Figure 2-8. Two potential models that might describe our dataset: a linear model versus
a degree 12 polynomial

We are given a bunch of data points on a flat plane, and our goal is to find a curve
that best describes this dataset (i.e., will allow us to predict the y-coordinate of a new
point given its x-coordinate). Using the data, we train two different models: a linear
model and a degree 12 polynomial. Which curve should we trust? The line which gets
almost no training example correctly? Or the complicated curve that hits every single
point in the dataset? At this point we might trust the linear fit because it seems much
less contrived. But just to be sure, let’s add more data to our dataset! The result is
shown in Figure 2-9.

28 | Chapter 2: Training Feed-Forward Neural Networks

Figure 2-9. Evaluating our model on new data indicates that the linear fit is a much bet‐
ter model than the degree 12 polynomial

Now the verdict is clear: the linear model is not only better subjectively but also
quantitatively (measured using the squared error metric). But this leads to a very
interesting point about training and evaluating machine learning models. By building
a very complex model, it’s quite easy to perfectly fit our training dataset because we
give our model enough degrees of freedom to contort itself to fit the observations in
the training set. But when we evaluate such a complex model on new data, it per‐
forms very poorly. In other words, the model does not generalize well. This is a phe‐
nomenon called overfitting, and it is one of the biggest challenges that a machine
learning engineer must combat. This becomes an even more significant issue in deep
learning, where our neural networks have large numbers of layers containing many
neurons. The number of connections in these models is astronomical, reaching the
millions. As a result, overfitting is commonplace.

Let’s see how this looks in the context of a neural network. Let’s say we have a neural
network with two inputs, a softmax output of size two, and a hidden layer with 3, 6,

Test Sets, Validation Sets, and Overfitting | 29

3 http://stanford.io/2pOdNhy

or 20 neurons. We train these networks using mini-batch gradient descent (batch size
10), and the results, visualized using ConvNetJS, are shown in Figure 2-10.3

Figure 2-10. A visualization of neural networks with 3, 6, and 20 neurons (in that order)
in their hidden layer

It’s already quite apparent from these images that as the number of connections in
our network increases, so does our propensity to overfit to the data. We can similarly
see the phenomenon of overfitting as we make our neural networks deep. These
results are shown in Figure 2-11, where we use networks that have one, two, or four
hidden layers of three neurons each.

Figure 2-11. A visualization of neural networks with one, two, and four hidden layers
(in that order) of three neurons each

This leads to three major observations. First, the machine learning engineer is always
working with a direct trade-off between overfitting and model complexity. If the
model isn’t complex enough, it may not be powerful enough to capture all of the use‐
ful information necessary to solve a problem. However, if our model is very complex
(especially if we have a limited amount of data at our disposal), we run the risk of
overfitting. Deep learning takes the approach of solving very complex problems with
complex models and taking additional countermeasures to prevent overfitting. We’ll
see a lot of these measures in this chapter as well as in later chapters.

30 | Chapter 2: Training Feed-Forward Neural Networks

http://stanford.io/2pOdNhy

Second, it is very misleading to evaluate a model using the data we used to train it.
Using the example in Figure 2-8, this would falsely suggest that the degree 12 polyno‐
mial model is preferable to a linear fit. As a result, we almost never train our model
on the entire dataset. Instead, as shown in Figure 2-12, we split up our data into
a training set and a test set.

Figure 2-12. We often split our data into nonoverlapping training and test sets in order
to fairly evaluate our model

This enables us to make a fair evaluation of our model by directly measuring how
well it generalizes on new data it has not yet seen. In the real world, large datasets are
hard to come by, so it might seem like a waste to not use all of the data at our disposal
during the training process. Consequently, it may be very tempting to reuse training
data for testing or cut corners while compiling test data. Be forewarned: if the test set
isn’t well constructed, we won’t be able draw any meaningful conclusions about our
model.

Third, it’s quite likely that while we’re training our data, there’s a point in time where
instead of learning useful features, we start overfitting to the training set. To avoid
that, we want to be able to stop the training process as soon as we start overfitting, to
prevent poor generalization. To do this, we divide our training process into epochs.
An epoch is a single iteration over the entire training set. In other words, if we have a
training set of size d and we are doing mini-batch gradient descent with batch size b,
then an epoch would be equivalent to d

b model updates. At the end of each epoch, we
want to measure how well our model is generalizing. To do this, we use an addi‐
tional validation set, which is shown in Figure 2-13. At the end of an epoch, the vali‐
dation set will tell us how the model does on data it has yet to see. If the accuracy on
the training set continues to increase while the accuracy on the validation set stays the
same (or decreases), it’s a good sign that it’s time to stop training because we’re over‐
fitting.

Test Sets, Validation Sets, and Overfitting | 31

4 Nelder, John A., and Roger Mead. “A simplex method for function minimization.” The Computer Journal 7.4
(1965): 308-313.

The validation set is also helpful as a proxy measure of accuracy during the process of
hyperparameter optimization. We’ve covered several hyperparameters so far in our
discussion (learning rate, minibatch size, etc.), but we have yet to develop a frame‐
work for how to find the optimal values for these hyperparameters. One potential
way to find the optimal setting of hyperparameters is by applying a grid search, where
we pick a value for each hyperparameter from a finite set of options (e.g.,
� ∈ 0 . 001, 0 . 01, 0 . 1 , batch size ∈ 16, 64, 128 , ...), and train the model with every
possible permutation of hyperparameter choices. We elect the combination of hyper‐
parameters with the best performance on the validation set, and report the accuracy
of the model trained with best combination on the test set.4

Figure 2-13. In deep learning we often include a validation set to prevent overfitting dur‐
ing the training process

With this in mind, before we jump into describing the various ways to directly com‐
bat overfitting, let’s outline the workflow we use when building and training deep
learning models. The workflow is described in detail in Figure 2-14. It is a tad intri‐
cate, but it’s critical to understand the pipeline in order to ensure that we’re properly
training our neural networks.

First we define our problem rigorously. This involves determining our inputs, the
potential outputs, and the vectorized representations of both. For instance, let’s say
our goal was to train a deep learning model to identify cancer. Our input would be an
RBG image, which can be represented as a vector of pixel values. Our output would
be a probability distribution over three mutually exclusive possibilities: 1) normal, 2)
benign tumor (a cancer that has yet to metastasize), or 3) malignant tumor (a cancer
that has already metastasized to other organs).

32 | Chapter 2: Training Feed-Forward Neural Networks

After we define our problem, we need to build a neural network architecture to solve
it. Our input layer would have to be of appropriate size to accept the raw data from
the image, and our output layer would have to be a softmax of size 3. We will also
have to define the internal architecture of the network (number of hidden layers, the
connectivities, etc.). We’ll further discuss the architecture of image recognition mod‐
els when we talk about convolutional neural networks in Chapter 4. At this point, we
also want to collect a significant amount of data for training or modeling. This data
would probably be in the form of uniformly sized pathological images that have been
labeled by a medical expert. We shuffle and divide this data up into separate training,
validation, and test sets.

Figure 2-14. Detailed workflow for training and evaluating a deep learning model

Finally, we’re ready to begin gradient descent. We train the model on our training set
for an epoch at a time. At the end of each epoch, we ensure that our error on the
training set and validation set is decreasing. When one of these stops to improve, we

Test Sets, Validation Sets, and Overfitting | 33

5 Tikhonov, Andrei Nikolaevich, and Vladlen Borisovich Glasko. “Use of the regularization method in non-
linear problems.” USSR Computational Mathematics and Mathematical Physics 5.3 (1965): 93-107.

terminate and make sure we’re happy with the model’s performance on the test data.
If we’re unsatisfied, we need to rethink our architecture or reconsider whether the
data we collect has the information required to make the prediction we’re interested
in making. If our training set error stopped improving, we probably need to do a bet‐
ter job of capturing the important features in our data. If our validation set error
stopped improving, we probably need to take measures to prevent overfitting.

If, however, we are happy with the performance of our model on the training data,
then we can measure its performance on the test data, which the model has never
seen before this point. If it is unsatisfactory, we need more data in our dataset because
the test set seems to consist of example types that weren’t well represented in the
training set. Otherwise, we are finished!

Preventing Overfitting in Deep Neural Networks
There are several techniques that have been proposed to prevent overfitting during
the training process. In this section, we’ll discuss these techniques in detail.

One method of combatting overfitting is called regularization. Regularization modi‐
fies the objective function that we minimize by adding additional terms that penalize
large weights. In other words, we change the objective function so that it
becomes Error + λ f θ , where f θ grows larger as the components of θ grow larger,
and λ is the regularization strength (another hyperparameter). The value we choose
for λ determines how much we want to protect against overfitting. A λ = 0 implies
that we do not take any measures against the possibility of overfitting. If λ is too large,
then our model will prioritize keeping θ as small as possible over trying to find the
parameter values that perform well on our training set. As a result, choosing λ is a
very important task and can require some trial and error.

The most common type of regularization in machine learning is L2 regularization.5 It
can be implemented by augmenting the error function with the squared magnitude of
all weights in the neural network. In other words, for every weight w in the neural
network, we add 1

2 λw2 to the error function. The L2 regularization has the intuitive
interpretation of heavily penalizing peaky weight vectors and preferring diffuse
weight vectors. This has the appealing property of encouraging the network to use all
of its inputs a little rather than using only some of its inputs a lot. Of particular note
is that during the gradient descent update, using the L2 regularization ultimately
means that every weight is decayed linearly to zero. Because of this phenomenon, L2
regularization is also commonly referred to as weight decay.

34 | Chapter 2: Training Feed-Forward Neural Networks

6 Srebro, Nathan, Jason DM Rennie, and Tommi S. Jaakkola. “Maximum-Margin Matrix Factorization.” NIPS,
Vol. 17, 2004.

We can visualize the effects of L2 regularization using ConvNetJS. Similar to Figures
2-10 and 2-11, we use a neural network with 2 inputs, a softmax output of size 2, and
a hidden layer with 20 neurons. We train the networks using mini-batch gradient
descent (batch size 10) and regularization strengths of 0.01, 0.1, and 1. The results can
be seen in Figure 2-15.

Figure 2-15. A visualization of neural networks trained with regularization strengths of
0.01, 0.1, and 1 (in that order)

Another common type of regularization is L1 regularization. Here, we add the
term λ w for every weight w in the neural network. The L1 regularization has the
intriguing property that it leads the weight vectors to become sparse during optimiza‐
tion (i.e., very close to exactly zero). In other words, neurons with L1 regularization
end up using only a small subset of their most important inputs and become quite
resistant to noise in the inputs. In comparison, weight vectors from L2 regularization
are usually diffuse, small numbers. L1 regularization is very useful when you want to
understand exactly which features are contributing to a decision. If this level of fea‐
ture analysis isn’t necessary, we prefer to use L2 regularization because it empirically
performs better.

Max norm constraints have a similar goal of attempting to restrict θ from becoming
too large, but they do this more directly.6 Max norm constraints enforce an absolute
upper bound on the magnitude of the incoming weight vector for every neuron and
use projected gradient descent to enforce the constraint. In other words, any time a
gradient descent step moves the incoming weight vector such that w 2 > c, we
project the vector back onto the ball (centered at the origin) with radius c. Typical
values of c are 3 and 4. One of the nice properties is that the parameter vector cannot
grow out of control (even if the learning rates are too high) because the updates to the
weights are always bounded.

Preventing Overfitting in Deep Neural Networks | 35

7 Srivastava, Nitish, et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of
Machine Learning Research 15.1 (2014): 1929-1958.

Dropout is a very different kind of method for preventing overfitting that has become
one of the most favored methods of preventing overfitting in deep neural networks.
7 While training, dropout is implemented by only keeping a neuron active with some
probability p (a hyperparameter), or setting it to zero otherwise. Intuitively, this
forces the network to be accurate even in the absence of certain information. It pre‐
vents the network from becoming too dependent on any one (or any small combina‐
tion) of neurons. Expressed more mathematically, it prevents overfitting by providing
a way of approximately combining exponentially many different neural network
architectures efficiently. The process of dropout is expressed pictorially
in Figure 2-16.

Figure 2-16. Dropout sets each neuron in the network as inactive with some random
probability during each minibatch of training

Dropout is pretty intuitive to understand, but there are some important intricacies to
consider. First, we’d like the outputs of neurons during test time to be equivalent to
their expected outputs at training time. We could fix this naïvely by scaling the output
at test time. For example, if p = 0 . 5, neurons must halve their outputs at test time in
order to have the same (expected) output they would have during training. This is
easy to see because a neuron’s output is set to 0 with probability 1 − p. This means
that if a neuron’s output prior to dropout was x, then after dropout, the expected out‐
put would be E output = px + 1 − p · 0 = px. This naïve implementation of drop‐
out is undesirable, however, because it requires scaling of neuron outputs at test time.
Test-time performance is extremely critical to model evaluation, so it’s always prefera‐
ble to use inverted dropout, where the scaling occurs at training time instead of at test

36 | Chapter 2: Training Feed-Forward Neural Networks

time. In inverted dropout, any neuron whose activation hasn’t been silenced has its
output divided by p before the value is propagated to the next layer. With this
fix, E output = p · x

p + 1 − p · 0 = x, and we can avoid arbitrarily scaling neuronal
output at test time.

Summary
In this chapter, we’ve learned all of the basics involved in training feed-forward neural
networks. We’ve talked about gradient descent, the backpropagation algorithm, as
well as various methods we can use to prevent overfitting. In the next chapter, we’ll
put these lessons into practice when we use the TensorFlow library to efficiently
implement our first neural networks. Then in Chapter 4, we’ll return to the problem
of optimizing objective functions for training neural networks and design algorithms
to significantly improve performance. These improvements will enable us to process
much more data, which means we’ll be able to build more comprehensive models.

Summary | 37

1 https://www.tensorflow.org/

CHAPTER 3

Implementing Neural Networks
in TensorFlow

What Is TensorFlow?
Although we could spend this entire book describing deep learning models in the
abstract, we hope that by the end of this text, you not only have an understanding of
how deep models work, but also that you are equipped with the skill set required to
build these models from scratch for your own problem spaces. Now that we have a
better theoretical understanding of deep learning models, we will spend this chapter
implementing some of these algorithms in software.

The primary tool that we will use throughout this text is called TensorFlow.1 Tensor‐
Flow is an open source software library released in 2015 by Google to make it easier
for developers to design, build, and train deep learning models. TensorFlow origina‐
ted as an internal library that Google developers used to build models in-house, and
we expect additional functionality to be added to the open source version as it is tes‐
ted and vetted in the internal flavor. Although TensorFlow is only one of several
options available to developers, we choose to use it here because of its thoughtful
design and ease of use. We’ll briefly compare TensorFlow to alternatives in the next
section.

On a high level, TensorFlow is a Python library that allows users to express arbitrary
computation as a graph of data flows. Nodes in this graph represent mathematical
operations, whereas edges represent data that is communicated from one node to
another. Data in TensorFlow is represented as tensors, which are multidimensional
arrays (representing vectors with a 1D tensor, matrices with a 2D tensor, etc.).

39

https://www.tensorflow.org/

2 http://deeplearning.net/software/theano/; http://torch.ch/; http://caffe.berkeleyvision.org/; https://www.nervana‐
sys.com/technology/neon/; https://keras.io/

Although this framework for thinking about computation is valuable in many differ‐
ent fields, TensorFlow is primarily used for deep learning in practice and research.

Thinking about neural networks as tensors and vice versa isn’t trivial, but rather a
skill that we will develop through the course of this text. Representing deep neural
networks in this way allows us to take advantage of the speedups afforded by modern
hardware (i.e., GPU acceleration of parallel tensor operations) and provides us with a
clean, but expressive, method for implementing models. In this chapter, we will dis‐
cuss the basics of TensorFlow and walk through two simple examples (logistic regres‐
sion and multilayer feed-forward neural networks). But before we dive in, let’s talk a
little bit about how TensorFlow stacks up against other frameworks for representing
deep learning models.

How Does TensorFlow Compare to Alternatives?
In addition to TensorFlow, there are a number of libraries that have popped up over
the years for building deep neural networks. These include Theano, Torch, Caffe,
Neon, and Keras.2 Based on two simple criteria (expressiveness and presence of an
active developer community), we ultimately narrowed the field of options to Tensor‐
Flow, Theano (built by the LISA Lab out of the University of Montreal), and Torch
(largely maintained by Facebook AI Research).

All three of these options boast a hefty developer community, enable users to manip‐
ulate tensors with few restrictions, and feature automatic differentiation (which ena‐
bles users to train deep models without having to crank out the backpropagation
algorithms for arbitrary architectures, as we had to do in the previous chapter). One
of the drawbacks of Torch, however, is that the framework is written in Lua. Lua is a
scripting language much like Python, but is less commonly used outside the deep
learning community. We wanted to avoid forcing newcomers to learn a whole new
language to build deep learning models, so we further narrowed our options to Ten‐
sorFlow and Theano.

Between these two options, the decision was difficult (and in fact, an early version of
this chapter was first written using Theano), but we chose TensorFlow in the end for
several subtle reasons. First, Theano has an additional “graph compilation” step that
took significant amounts of time while setting up certain kinds of deep learning
architectures. While small in comparison to train time, this compilation phase proved
frustrating while writing and debugging new code. Second, TensorFlow has a much
cleaner interface as compared to Theano. Many classes of models can be expressed in
significantly fewer lines without sacrificing the expressiveness of the framework.

40 | Chapter 3: Implementing Neural Networks in TensorFlow

http://bit.ly/2jtjGea
http://torch.ch/
http://caffe.berkeleyvision.org/
http://bit.ly/2r9XugB
http://bit.ly/2r9XugB
https://keras.io/

3 http://docs.nvidia.com/cuda
4 https://developer.nvidia.com/rdp/cudnn-archive

Finally, TensorFlow was built with production use in mind, whereas Theano was
designed by researchers almost purely for research purposes. As a result, TensorFlow
has many features out of the box and in the works that make it a better choice for real
systems (the ability to run in mobile environments, easily build models that span
multiple GPUs on a single machine, and train large-scale networks in a distributed
fashion). Although familiarity with Theano and Torch can be extremely helpful while
navigating open source examples, overviews of these frameworks are beyond the
scope of this book.

Installing TensorFlow
Installing TensorFlow in your local development environment is straightforward if
you aren’t planning on modifying the TensorFlow source code. We use a Python
package installation manager called Pip. If you don’t already have Pip installed on
your computer, use the following commands in your terminal:

Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev

Mac OS X
$ sudo easy_install pip

Once we have Pip (version 8.1 or later) installed on our computers, we can use the
following commands to install TensorFlow. Note the difference in Pip package nam‐
ing if we would like to install a GPU-enabled version of TensorFlow (which we
strongly recommend):

$ pip install --upgrade tensorflow # for Python 2.7
$ pip3 install --upgrade tensorflow # for Python 3.n
$ pip install --upgrade tensorflow-gpu # for Python 2.7
 # and GPU
$ pip3 install --upgrade tensorflow-gpu # for Python 3.n
 # and GPU

If you installed the GPU-enabled version of TensorFlow, you’ll also have to take a
couple of additional steps. Specifically, you’ll have to download the CUDA Toolkit
8.03 and the latest CUDNN Toolkit.4 Install the CUDA Toolkit 7.0 into /usr/local/
cuda. Then uncompress and copy the CUDNN files into the toolkit directory. Assum‐
ing the toolkit is installed in/usr/local/cuda, you can follow these instructions to
accomplish this:

$ tar xvzf cudnn-version-os.tgz
$ sudo cp cudnn-version-os/cudnn.h /usr/local/cuda/include
$ sudo cp cudnn-version-os/libcudnn* /usr/local/cuda/lib64

Installing TensorFlow | 41

http://docs.nvidia.com/cuda
https://developer.nvidia.com/rdp/cudnn-archive

5 https://www.tensorflow.org/install/

You will also need to set the LD_LIBRARY_PATH and CUDA_HOME environment variables
to give TensorFlow access to your CUDA installation. Consider adding the com‐
mands below to your ~/.bash_profile. These assume your CUDA installation is
in /usr/local/cuda:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda

Note that to see these changes appropriately reflected in your current terminal ses‐
sion, you’ll have to run:

$ source ~/.bash_profile

You should now be able to run TensorFlow from your Python shell of choice. In this
tutorial, we choose to use IPython. Using Pip, installing IPython only requires the fol‐
lowing command:

$ pip install ipython

Then we can test that our installation of TensorFlow functions as expected:

$ ipython

...

In [1]: import tensorflow as tf

In [2]: deep_learning = tf.constant('Deep Learning')

In [3]: session = tf.Session()

In [4]: session.run(deep_learning)
Out[4]: 'Deep Learning'

In [5]: a = tf.constant(2)

In [6]: a = tf.constant(2)

In [7]: multiply = tf.mul(a, b)

In [7]: session.run(multiply)
Out[7]: 6

Additional, up-to-date instructions and details about installation can be found on the
TensorFlow website.5

42 | Chapter 3: Implementing Neural Networks in TensorFlow

https://www.tensorflow.org/install/

6 https://www.tensorflow.org/api_docs/python/tf/Variable
7 https://www.tensorflow.org/api_docs/python/tf/random_normal

Creating and Manipulating TensorFlow Variables
When we build a deep learning model in TensorFlow, we use variables to represent
the parameters of the model. TensorFlow variables are in-memory buffers that con‐
tain tensors; but unlike normal tensors that are only instantiated when a graph is run
and that are immediately wiped clean afterward, variables survive across multiple
executions of a graph. As a result, TensorFlow variables have the following three
properties:

• Variables must be explicitly initialized before a graph is used for the first time.
• We can use gradient methods to modify variables after each iteration as we

search for a model’s optimal parameter settings.
• We can save the values stored in variables to disk and restore them for later use.

These three properties are what make TensorFlow especially useful for building
machine learning models.

Creating a variable is simple, and TensorFlow provides mechanics that allow us to
initialize variables in several ways. Let’s start off by initializing a variable that
describes the weights connecting neurons between two layers of a feed-forward neu‐
ral network:

weights = tf.Variable(tf.random_normal([300, 200], stddev=0.5),
 name="weights")

Here we pass two arguments to tf.Variable.6 The first, tf.random_normal,7 is an
operation that produces a tensor initialized using a normal distribution with standard
deviation 0.5. We’ve specified that this tensor is of size 300 x 200, implying that the
weights connect a layer with 300 neurons to a layer with 200 neurons. We’ve also
passed a name to our call to tf.Variable. The name is a unique identifier that allows
us to refer to the appropriate node in the computation graph. In this case, weights is
meant to be trainable; or in other words, we will automatically compute and apply
gradients to weights. If weights is not meant to be trainable, we may pass an
optional flag when we call tf.Variable:

weights = tf.Variable(tf.random_normal([300, 200], stddev=0.5),
 name="weights", trainable=False)

In addition to using tf.random_normal, there are several other methods to initialize a
TensorFlow variable:

Creating and Manipulating TensorFlow Variables | 43

https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/random_normal

8 https://www.tensorflow.org/api_docs/python/tf/assign
9 http://bit.ly/2rtqoIA

10 https://www.tensorflow.org/api_docs/python/tf/initialize_variables

Common tensors from the TensorFlow API docs

tf.zeros(shape, dtype=tf.float32, name=None)
tf.ones(shape, dtype=tf.float32, name=None)
tf.random_normal(shape, mean=0.0, stddev=1.0,
 dtype=tf.float32, seed=None,
 name=None)
tf.truncated_normal(shape, mean=0.0, stddev=1.0,
 dtype=tf.float32, seed=None,
 name=None)
tf.random_uniform(shape, minval=0, maxval=None,
 dtype=tf.float32, seed=None,
 name=None)

When we call tf.Variable, three operations are added to the computation graph:

• The operation producing the tensor we use to initialize our variable
• The tf.assign operation, which is responsible for filling the variable with the

initializing tensor prior to the variable’s use
• The variable operation, which holds the current value of the variable

This can be visualized as shown in Figure 3-1.

Figure 3-1. Three operations are added to the graph when instantiating a TensorFlow
variable. In this example, we instantiate the variable weights using a random normal
initializer.

As we mentioned previously in the three operations, before we use any TensorFlow
variable, the tf.assign8 operation must be run so that the variable is appropriately
initialized with the desired value. We can do this by running tf.initial

ize_all_variables(),9 which will trigger all of the tf.assign operations in our
graph. We can also selectively initialize only certain variables in our computational
graph using the tf.initialize_variables(var1, var2, ...).10 We’ll describe this
in more detail when we discuss sessions in TensorFlow.

44 | Chapter 3: Implementing Neural Networks in TensorFlow

https://www.tensorflow.org/api_docs/python/tf/assign
http://bit.ly/2rtqoIA
https://www.tensorflow.org/api_docs/python/tf/initialize_variables

11 Abadi, Martín, et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.”
arXiv preprint arXiv:1603.04467 (2016).

TensorFlow Operations
We’ve already talked a little bit about operations in the context of variable initializa‐
tion, but these only make up a small subset of the universe of operations available in
TensorFlow. On a high level, TensorFlow operations represent abstract transforma‐
tions that are applied to tensors in the computation graph. Operations may have
attributes that may be supplied a priori or are inferred at runtime. For example, an
attribute may serve to describe the expected types of input (adding tensors of type
float32 versus int32). Just as variables are named, operations may also be supplied
with an optional name attribute for easy reference into the computation graph.

An operation consists of one or more kernels, which represent device-specific imple‐
mentations. For example, an operation may have separate CPU and GPU kernels
because it can be more efficiently expressed on a GPU. This is the case for many Ten‐
sorFlow operations on matrices.

To provide an overview of the types of operations available, we include Table 3-1
from the original TensorFlow white paper detailing the various categories of opera‐
tions in TensorFlow.11

Table 3-1. A summary table of TensorFlow operations

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural network building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore

Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Placeholder Tensors
Now that we have a solid understanding of TensorFlow variables and operations, we
have a nearly complete description of the components of a TensorFlow computation
graph. The only missing piece is how we pass the input to our deep model (during
both train and test time). A variable is insufficient because it is only meant to be ini‐
tialized once. Instead, we need a component that we populate every single time the
computation graph is run.

TensorFlow Operations | 45

12 https://www.tensorflow.org/api_docs/python/tf/placeholder
13 https://www.tensorflow.org/api_docs/python/tf/Session

TensorFlow solves this problem using a construct called a placeholder.12 A placeholder
is instantiated as follows and can be used in operations just like ordinary TensorFlow
variables and tensors:

x = tf.placeholder(tf.float32, name="x", shape=[None, 784])
W = tf.Variable(tf.random_uniform([784,10], -1, 1), name="W")
multiply = tf.matmul(x, W)

Here we define a placeholder where x represents a minibatch of data stored
as float32’s. We notice that x has 784 columns, which means that each data sample
has 784 dimensions. We also notice that x has an undefined number of rows. This
means that x can be initialized with an arbitrary number of data samples. While we
could instead multiply each data sample separately by W, expressing a full minibatch
as a tensor allows us to compute the results for all the data samples in parallel. The
result is that the ith row of the multiply tensor corresponds to W multiplied with
the ith data sample.

Just as variables need to be initialized the first time the computation graph is built,
placeholders need to be filled every time the computation graph (or a subgraph) is
run. We’ll discuss how this works in more detail in the next section.

Sessions in TensorFlow
A TensorFlow program interacts with a computation graph using a session.13 The Ten‐
sorFlow session is responsible for building the initial graph, and can be used to initi‐
alize all variables appropriately and to run the computational graph. To explore each
of these pieces, let’s consider the following simple Python script:

import tensorflow as tf
from read_data import get_minibatch()

x = tf.placeholder(tf.float32, name="x", shape=[None, 784])
W = tf.Variable(tf.random_uniform([784, 10], -1, 1), name="W")
b = tf.Variable(tf.zeros([10]), name="biases")
output = tf.matmul(x, W) + b

init_op = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init_op)
feed_dict = {"x" : get_minibatch()}
sess.run(output, feed_dict=feed_dict)

46 | Chapter 3: Implementing Neural Networks in TensorFlow

https://www.tensorflow.org/api_docs/python/tf/placeholder
https://www.tensorflow.org/api_docs/python/tf/Session

The first four lines after the import statement describe the computational graph that
is built by the session when it is finally instantiated. The graph (sans variable initiali‐
zation operations) is depicted in Figure 3-2. We then initialize the variables as
required by using the session variable to run the initialization operation in
sess.run(init_op). Finally, we can run the subgraph by calling sess.run again, but
this time we pass in the tensors (or list of tensors) we want to compute along with a
feed_dict that fills the placeholders with the necessary input data.

Figure 3-2. This is a an example of a simple computational graph in TensorFlow

Finally, the sess.run interface can also be used to train networks. We will explore this
in further detail when we use TensorFlow to train our first machine learning model
on MNIST. But how exactly does a single line of code (sess.run) accomplish such a
wide variety of functions? The answer lies in the powerful expressivity of the underly‐

Sessions in TensorFlow | 47

ing computational graph. All of these functionalities are represented as TensorFlow
operations that can be passed as arguments to sess.run. All sess.run needs to do is
traverse down the computational graph to identify all of the dependencies that com‐
pose the relevant subgraph, ensure that all of the placeholder variables that belong to
the identified subgraph are filled using the feed_dict, and then traverse back up the
subgraph (executing all of the intermediate operations) to evaluate the original argu‐
ments.

Now that we have a comprehensive understanding of sessions and how to run them,
we’ll explore two more major concepts in building and maintaining computational
graphs.

Navigating Variable Scopes and Sharing Variables
Although we won’t run into this problem just yet, building complex models often
requires reusing and sharing large sets of variables that we’ll want to instantiate
together in one place. Unfortunately, trying to enforce modularity and readability can
result in unintended results if we aren’t careful. Let’s consider the following example:

def my_network(input):
 W_1 = tf.Variable(tf.random_uniform([784, 100], -1, 1),
 name="W_1")
 b_1 = tf.Variable(tf.zeros([100]), name="biases_1")
 output_1 = tf.matmul(input, W_1) + b_1

 W_2 = tf.Variable(tf.random_uniform([100, 50], -1, 1),
 name="W_2")
 b_2 = tf.Variable(tf.zeros([50]), name="biases_2")
 output_2 = tf.matmul(output_1, W_2) + b_2

 W_3 = tf.Variable(tf.random_uniform([50, 10], -1, 1),
 name="W_3")
 b_3 = tf.Variable(tf.zeros([10]), name="biases_3")
 output_3 = tf.matmul(output_2, W_3) + b_3

 # printing names
 print "Printing names of weight parameters"
 print W_1.name, W_2.name, W_3.name
 print "Printing names of bias parameters"
 print b_1.name, b_2.name, b_3.name

 return output_3

This network setup consists of six variables describing three layers. As a result, if we
wanted to use this network multiple times, we’d prefer to encapsulate it into a com‐
pact function like my_network, which we can call multiple times. However, when we
try to use this network on two different inputs, we get something unexpected:

48 | Chapter 3: Implementing Neural Networks in TensorFlow

14 https://www.tensorflow.org/api_docs/python/tf/get_variable
15 https://www.tensorflow.org/api_docs/python/tf/variable_scope

In [1]: i_1 = tf.placeholder(tf.float32, [1000, 784],
 name="i_1")

In [2]: my_network(i_1)
Printing names of weight parameters
W_1:0 W_2:0 W_3:0
Printing names of bias parameters
biases_1:0 biases_2:0 biases_3:0
Out[2]: <tensorflow.python.framework.ops.Tensor ...>

In [1]: i_2 = tf.placeholder(tf.float32, [1000, 784],
 name="i_2")

In [2]: my_network(i_2)
Printing names of weight parameters
W_1_1:0 W_2_1:0 W_3_1:0
Printing names of bias parameters
biases_1_1:0 biases_2_1:0 biases_3_1:0
Out[2]: <tensorflow.python.framework.ops.Tensor ...>

If we observe closely, our second call to my_network doesn’t use the same variables as
the first call (in fact, the names are different!). Instead, we’ve created a second set of
variables! In many cases, we don’t want to create a copy, but rather reuse the model
and its variables. It turns out, that in this case, we shouldn’t be using tf.Variable.
Instead, we should be using a more advanced naming scheme that takes advantage of
TensorFlow’s variable scoping.

TensorFlow’s variable scoping mechanisms are largely controlled by two functions:

tf.get_variable(<name>, <shape>, <initializer>)

Checks if a variable with this name exists, retrieves the variable if it does, or cre‐
ates it using the shape and initializer if it doesn’t.14

tf.variable_scope(<scope_name>)

Manages the namespace and determines the scope in which tf.get_variable
operates.15

Let’s try to rewrite my_network in a cleaner fashion using TensorFlow variable scop‐
ing. The new names of our variables are namespaced as "layer1/W", "layer2/b",
"layer2/W", and so forth:

Navigating Variable Scopes and Sharing Variables | 49

https://www.tensorflow.org/api_docs/python/tf/get_variable
https://www.tensorflow.org/api_docs/python/tf/variable_scope

def layer(input, weight_shape, bias_shape):
 weight_init = tf.random_uniform_initializer(minval=-1,
 maxval=1)
 bias_init = tf.constant_initializer(value=0)
 W = tf.get_variable("W", weight_shape,
 initializer=weight_init)
 b = tf.get_variable("b", bias_shape,
 initializer=bias_init)
 return tf.matmul(input, W) + b

def my_network(input):
 with tf.variable_scope("layer_1"):
 output_1 = layer(input, [784, 100], [100])

 with tf.variable_scope("layer_2"):
 output_2 = layer(output_1, [100, 50], [50])

 with tf.variable_scope("layer_3"):
 output_3 = layer(output_2, [50, 10], [10])

 return output_3

Now let’s try to call my_network twice, just like we did in the preceding code block:

In [1]: i_1 = tf.placeholder(tf.float32, [1000, 784],
 name="i_1")

In [2]: my_network(i_1)
Out[2]: <tensorflow.python.framework.ops.Tensor ...>

In [1]: i_2 = tf.placeholder(tf.float32, [1000, 784],
 name="i_2")

In [2]: my_network(i_2)
ValueError: Over-sharing: Variable layer_1/W already exists...

Unlike tf.Variable, the tf.get_variable command checks that a variable of the
given name hasn’t already been instantiated. By default, sharing is not allowed (just to
be safe!), but if we want to enable sharing within a variable scope, we can say so
explicitly:

with tf.variable_scope("shared_variables") as scope:
 i_1 = tf.placeholder(tf.float32, [1000, 784], name="i_1")
 my_network(i_1)
 scope.reuse_variables()
 i_2 = tf.placeholder(tf.float32, [1000, 784], name="i_2")
 my_network(i_2)

This allows us to retain modularity while still allowing variable sharing. And as a nice
byproduct, our naming scheme is cleaner as well.

50 | Chapter 3: Implementing Neural Networks in TensorFlow

16 https://www.tensorflow.org/api_docs/python/tf/device
17 https://www.tensorflow.org/api_docs/python/tf/ConfigProto

Managing Models over the CPU and GPU
TensorFlow allows us to utilize multiple computing devices, if we so desire, to build
and train our models. Supported devices are represented by string IDs and normally
consist of the following:

"/cpu:0"

The CPU of our machine.

"/gpu:0"

The first GPU of our machine, if it has one.

"/gpu:1"

The second GPU of our machine, if it has one.

When a TensorFlow operation has both CPU and GPU kernels, and GPU use is
enabled, TensorFlow will automatically opt to use the GPU implementation. To
inspect which devices are used by the computational graph, we can initialize our Ten‐
sorFlow session with the log_device_placement set to True:

sess = tf.Session(config=tf.ConfigProto(
 log_device_placement=True))

If we desire to use a specific device, we may do so by using with tf.device16 to
select the appropriate device. If the chosen device is not available, however, an error
will be thrown. If we would like TensorFlow to find another available device if the
chosen device does not exist, we can pass the allow_soft_placement flag to the ses‐
sion variable as follows:17

with tf.device('/gpu:2'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0], shape=[2, 2], name='a')
 b = tf.constant([1.0, 2.0], shape=[2, 1], name='b')
 c = tf.matmul(a, b)

sess = tf.Session(config=tf.ConfigProto(
 allow_soft_placement=True, log_device_placement=True))

sess.run(c)

TensorFlow also allows us to build models that span multiple GPUs by building
models in a tower-like fashion as shown in Figure 3-3. The following code is an
example of multi-GPU code:

Managing Models over the CPU and GPU | 51

https://www.tensorflow.org/api_docs/python/tf/device
https://www.tensorflow.org/api_docs/python/tf/ConfigProto

18 Cox, David R. “The Regression Analysis of Binary Sequences.” Journal of the Royal Statistical Society. Series B
(Methodological) (1958): 215-242.

c = []

for d in ['/gpu:0', '/gpu:1']:
 with tf.device(d):
 a = tf.constant([1.0, 2.0, 3.0, 4.0], shape=[2, 2],
 name='a')
 b = tf.constant([1.0, 2.0], shape=[2, 1], name='b')
 c.append(tf.matmul(a, b))

with tf.device('/cpu:0'):
 sum = tf.add_n(c)

sess = tf.Session(config=tf.ConfigProto(
 log_device_placement=True))

sess.run(sum)

Figure 3-3. Building multi-GPU models in a tower-like fashion

Specifying the Logistic Regression Model in TensorFlow
Now that we’ve developed all of the basic concepts of TensorFlow, let’s build a simple
model to tackle the MNIST dataset. As you may recall, our goal is to identify hand‐
written digits from 28 x 28 black-and-white images. The first network that we’ll build
implements a simple machine learning algorithm known as logistic regression.18

52 | Chapter 3: Implementing Neural Networks in TensorFlow

On a high level, logistic regression is a method by which we can calculate the proba‐
bility that an input belongs to one of the target classes. In our case, we’ll compute the
probability that a given input image is a 0, 1, ..., or 9. Our model uses a
matrix W representing the weights of the connections in the network, as well as a
vector b corresponding to the biases to estimate whether an input x belongs to
class i using the softmax expression we talked about earlier:

P y = i x = so f tmaxi Wx + b = e
Wix + bi

∑ j e
W jx + bj

Our goal is to learn the values for W and b that most effectively classify our inputs as
accurately as possible. Pictorially, we can express the logistic regression network as
shown in Figure 3-4 (bias connections are not shown to reduce clutter).

Figure 3-4. Interpreting logistic regression as a primitive neural network

You’ll notice that the network interpretation for logistic regression is rather primitive.
It doesn’t have any hidden layers, meaning that it is limited in its ability to learn com‐
plex relationships! We have an output softmax of size 10 because we have 10 possible
outcomes for each input. Moreover, we have an input layer of size 784, one input neu‐
ron for every pixel in the image! As we’ll see, the model makes decent headway
toward correctly classifying our dataset, but there’s lots of room for improvement.
Over the course of the rest of this chapter and Chapter 5, we’ll try to significantly
improve our accuracy. But first, let’s look at how we can implement the logistic net‐
work in TensorFlow so we can train it on our computer!

We’ll build the the logistic regression model in four phases:

Specifying the Logistic Regression Model in TensorFlow | 53

1. inference: produces a probability distribution over the output classes given a
minibatch

2. loss: computes the value of the error function (in this case, the cross-entropy
loss)

3. training: responsible for computing the gradients of the model’s parameters and
updating the model

4. evaluate: will determine the effectiveness of a model

Given a minibatch, which consists of 784-dimensional vectors representing MNIST
images, we can represent logistic regression by taking the softmax of the input multi‐
plied with a matrix representing the weights connecting the input and output layer.
Each row of the output tensor represents the probability distribution over output
classes for each corresponding data sample in the minibatch:

def inference(x):
 tf.constant_initializer(value=0)
 W = tf.get_variable("W", [784, 10],
 initializer=init)
 b = tf.get_variable("b", [10],
 initializer=init)
 output = tf.nn.softmax(tf.matmul(x, W) + b)
 return output

Now, given the correct labels for a minibatch, we should be able to compute the aver‐
age error per data sample. We accomplish this using the following code snippet that
computes the cross-entropy loss over a minibatch:

def loss(output, y):
 dot_product = y * tf.log(output)

 # Reduction along axis 0 collapses each column into a
 # single value, whereas reduction along axis 1 collapses
 # each row into a single value. In general, reduction along
 # axis i collapses the ith dimension of a tensor to size 1.
 xentropy = -tf.reduce_sum(dot_product, reduction_indices=1)

 loss = tf.reduce_mean(xentropy)

 return loss

Then, given the current cost incurred, we’ll want to compute the gradients and mod‐
ify the parameters of the model appropriately. TensorFlow makes this easy by giving
us access to built-in optimizers that produce a special train operation that we can run
via a TensorFlow session when we minimize them. Note that when we create the
training operation, we also pass in a variable that represents the number of mini‐
batches that have been processed. Each time the training operation is run, this step
variable is incremented so that we can keep track of progress:

54 | Chapter 3: Implementing Neural Networks in TensorFlow

19 https://www.tensorflow.org/api_docs/python/tf/summary/scalar
20 https://www.tensorflow.org/api_docs/python/tf/summary/histogram
21 https://www.tensorflow.org/api_docs/python/tf/summary/merge_all

def training(cost, global_step):
 optimizer = tf.train.GradientDescentOptimizer(
 learning_rate)
 train_op = optimizer.minimize(cost,
 global_step=global_step)
 return train_op

Finally, we put together a simple computational subgraph to evaluate the model on
the validation or test set:

def evaluate(output, y):
 correct_prediction = tf.equal(tf.argmax(output, 1),
 tf.argmax(y, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction,
 tf.float32))
 return accuracy

This completes TensorFlow graph setup for the logistic regression model.

Logging and Training the Logistic Regression Model
Now that we have all of the major pieces, we begin to stitch them together. In order to
log important information as we train the model, we log several summary statistics.
For example, we use the tf.scalar_summary19 and tf.histogram_summary20 com‐
mands to log the cost for each minibatch, validation error, and the distribution of
parameters. For reference, we’ll demonstrate the scalar summary statistic for the cost
 function:

def training(cost, global_step):
 tf.scalar_summary("cost", cost)
 optimizer = tf.train.GradientDescentOptimizer(
 learning_rate)
 train_op = optimizer.minimize(cost,
 global_step=global_step)
 return train_op

Every epoch, we run the tf.merge_all_summaries21 in order to collect all summary
statistics we’ve logged and use a tf.train.SummaryWriter to write the log to disk. In
the next section, we’ll describe how we can use visualize these logs with the built-in
TensorBoard tool.

Logging and Training the Logistic Regression Model | 55

https://www.tensorflow.org/api_docs/python/tf/summary/scalar
https://www.tensorflow.org/api_docs/python/tf/summary/histogram
https://www.tensorflow.org/api_docs/python/tf/summary/merge_all

In addition to saving summary statistics, we also save the model parameters using
the tf.train.Saver model saver. By default, the saver maintains the latest five
checkpoints, and we can restore them for future use.

Putting it all together, we obtain the following Python script:

Parameters
learning_rate = 0.01
training_epochs = 1000
batch_size = 100
display_step = 1

with tf.Graph().as_default():

 # mnist data image of shape 28*28=784
 x = tf.placeholder("float", [None, 784])

 # 0-9 digits recognition => 10 classes
 y = tf.placeholder("float", [None, 10])

 output = inference(x)

 cost = loss(output, y)

 global_step = tf.Variable(0, name='global_step',
 trainable=False)

 train_op = training(cost, global_step)

 eval_op = evaluate(output, y)

 summary_op = tf.merge_all_summaries()

 saver = tf.train.Saver()

 sess = tf.Session()

 summary_writer = tf.train.SummaryWriter("logistic_logs/",
 graph_def=sess.graph_def)

 init_op = tf.initialize_all_variables()

 sess.run(init_op)

 # Training cycle
 for epoch in range(training_epochs):

 avg_cost = 0.
 total_batch = int(mnist.train.num_examples/batch_size)
 # Loop over all batches

56 | Chapter 3: Implementing Neural Networks in TensorFlow

 for i in range(total_batch):
 mbatch_x, mbatch_y = mnist.train.next_batch(
 batch_size)
 # Fit training using batch data
 feed_dict = {x : mbatch_x, y : mbatch_y}
 sess.run(train_op, feed_dict=feed_dict)
 # Compute average loss
 minibatch_cost = sess.run(cost,
 feed_dict=feed_dict)
 avg_cost += minibatch_cost/total_batch
 # Display logs per epoch step
 if epoch % display_step == 0:
 val_feed_dict = {
 x : mnist.validation.images,
 y : mnist.validation.labels
 }
 accuracy = sess.run(eval_op,
 feed_dict=val_feed_dict)

 print "Validation Error:", (1 - accuracy)

 summary_str = sess.run(summary_op,
 feed_dict=feed_dict)
 summary_writer.add_summary(summary_str,
 sess.run(global_step))

 saver.save(sess, "logistic_logs/model-checkpoint",
 global_step=global_step)

 print "Optimization Finished!"

 test_feed_dict = {
 x : mnist.test.images,
 y : mnist.test.labels
 }

 accuracy = sess.run(eval_op, feed_dict=test_feed_dict)

 print "Test Accuracy:", accuracy

Running the script gives us a final accuracy of 91.9% on the test set within 100 epochs
of training. This isn’t bad, but we’ll try to do better in the final section of this chapter,
when we approach the problem with a feed-forward neural network.

Logging and Training the Logistic Regression Model | 57

22 https://www.tensorflow.org/get_started/graph_viz

Leveraging TensorBoard to Visualize Computation Graphs
and Learning
Once we set up the logging of summary statistics as described in the previous sec‐
tion, we are ready to visualize the data we’ve collected. TensorFlow comes with a visu‐
alization tool called TensorBoard, which provides an easy-to-use interface for
navigating through our summary statistics.22 Launching TensorBoard is as easy as
running:

tensorboard --logdir=<absolute_path_to_log_dir>

The logdir flag should be set to the directory where our tf.train.SummaryWriter
was configured to serialize our summary statistics. Be sure to pass an absolute path
(and not a relative path), because otherwise TensorBoard may not be able to find out
logs. If we successfully launch TensorBoard, it should be serving our data at http://
localhost:6006/, which we can navigate to in our browser.

As shown in Figure 3-5, the first tab contains information on the scalar summaries
that we collected. We can observe both the per-minibatch cost and the validation
error going down over time.

Figure 3-5. The TensorBoard events view

And as Figure 3-6 shows, there’s also a tab that allows us to visualize the full computa‐
tion graph that we’ve built. It’s not particularly easy to interpret, but when we are
faced with unexpected behavior, the graph view can serve as a useful debugging tool.

58 | Chapter 3: Implementing Neural Networks in TensorFlow

https://www.tensorflow.org/get_started/graph_viz
http://localhost:6006/
http://localhost:6006/

Figure 3-6. The TensorBoard graph view

Building a Multilayer Model for MNIST in TensorFlow
Using a logistic regression model, we were able to achieve an 8.1% error rate on the
MNIST dataset. This may seem impressive, but it isn’t particularly useful for high-
value practical applications. For example, if we were using our system to read per‐
sonal checks written out for 4-digit amounts ($1,000 to $9,999), we would make
errors on nearly 30% of checks! To create an MNIST digit reader that’s more practi‐
cal, let’s try to build a feed-forward network to tackle the MNIST challenge.

We construct a feed-forward model with two hidden layers, each with 256 ReLU neu‐
rons, as shown in Figure 3-7.

Building a Multilayer Model for MNIST in TensorFlow | 59

Figure 3-7. A feed-forward network powered by ReLU neurons with two hidden layers

We can reuse most of the code from our logistic regression example with a couple of
modifications:

def layer(input, weight_shape, bias_shape):
 weight_stddev = (2.0/weight_shape[0])**0.5
 w_init = tf.random_normal_initializer(stddev=weight_stddev)
 bias_init = tf.constant_initializer(value=0)
 W = tf.get_variable("W", weight_shape,
 initializer=w_init)
 b = tf.get_variable("b", bias_shape,
 initializer=bias_init)
 return tf.nn.relu(tf.matmul(input, W) + b)

def inference(x):
 with tf.variable_scope("hidden_1"):
 hidden_1 = layer(x, [784, 256], [256])

 with tf.variable_scope("hidden_2"):

60 | Chapter 3: Implementing Neural Networks in TensorFlow

23 He, Kaiming, et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classi‐
fication.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

 hidden_2 = layer(hidden_1, [256, 256], [256])

 with tf.variable_scope("output"):
 output = layer(hidden_2, [256, 10], [10])

 return output

Most of the new code is self explanatory, but our initialization strategy deserves some
additional description. The performance of deep neural networks very much depends
on an effective initialization of its parameters. As we’ll describe in the next chapter,
there are many features of the error surfaces of deep neural networks that make opti‐
mization using vanilla stochastic gradient descent very difficult. This problem is exa‐
cerbated as the number of layers in the model (and thus the complexity of the error
surface) increases. Smart initialization is one way to mitigate this issue.

For ReLU units, a study published in 2015 by He et al. demonstrates that the variance
of weights in a network should be 2

nin
, where nin is the number inputs coming into

the neuron.23 The curious reader should investigate what happens when we change
our initialization strategy. For example, changing tf.random_nor

mal_initializer back to the tf.random_uniform_initializer we used in the logis‐
tic regression example significantly hurts performance.

Finally, for slightly better performance, we perform the softmax while computing the
loss instead of during the inference phase of the network. This results in the following
modification:

def loss(output, y):
 xentropy = tf.nn.softmax_cross_entropy_with_logits(output, y)
 loss = tf.reduce_mean(xentropy)
 return loss

Running this program for 300 epochs gives us a massive improvement over the logis‐
tic regression model. The model operates with an accuracy of 98.2%, which is nearly a
78% reduction in the per-digit error rate compared to our first attempt.

Building a Multilayer Model for MNIST in TensorFlow | 61

Summary
In this chapter, we learned more about using TensorFlow as a library for expressing
and training machine learning models. We discussed many critical features of Tensor‐
Flow, including management of sessions, variables, operations, computation graphs,
and devices. In the final sections, we used this understanding to train and visualize a
logistic regression model and a feed-forward neural network using stochastic gradi‐
ent descent. Although the logistic network model made many errors on the MNIST
dataset, our feed-forward network performed much more effectively, making only an
average of 1.8 errors out of every 100 digits. We’ll improve on this error rate even fur‐
ther in Chapter 5.

In the next chapter, we’ll begin to grapple with many of the problems that arise as we
start to make our networks deeper. We’ve already talked about the first piece of the
puzzle, which is finding smarter ways to initialize the parameters in our network. In
the next chapter, we’ll find that as our models become more complex, smart initializa‐
tion is no longer sufficient for achieving good performance. To overcome these chal‐
lenges, we’ll delve into modern optimization theory and design better algorithms for
training deep networks.

62 | Chapter 3: Implementing Neural Networks in TensorFlow

1 Bengio, Yoshua, et al. “Greedy Layer-Wise Training of Deep Networks.” Advances in Neural Information Pro‐
cessing Systems 19 (2007): 153.

CHAPTER 4

Beyond Gradient Descent

The Challenges with Gradient Descent
The fundamental ideas behind neural networks have existed for decades, but it wasn’t
until recently that neural network-based learning models have become mainstream.
Our fascination with neural networks has everything to do with their expressiveness,
a quality we’ve unlocked by creating networks with many layers. As we have discussed
in previous chapters, deep neural networks are able to crack problems that were pre‐
viously deemed intractable. Training deep neural networks end to end, however, is
fraught with difficult challenges that took many technological innovations to unravel,
including massive labeled datasets (ImageNet, CIFAR, etc.), better hardware in the
form of GPU acceleration, and several algorithmic discoveries.

For several years, researchers resorted to layer-wise greedy pre-training in order to
grapple with the complex error surfaces presented by deep learning models.1 These
time-intensive strategies would try to find more accurate initializations for the mod‐
el’s parameters one layer at a time before using mini-batch gradient descent to con‐
verge to the optimal parameter settings. More recently, however, breakthroughs in
optimization methods have enabled us to directly train models in an end-to-end fash‐
ion.

In this chapter, we will discuss several of these breakthroughs. The next couple of sec‐
tions will focus primarily on local minima and whether they pose hurdles for success‐
fully training deep models. In subsequent sections, we will further explore the
nonconvex error surfaces induced by deep models, why vanilla mini-batch gradient
descent falls short, and how modern nonconvex optimizers overcome these pitfalls.

63

Local Minima in the Error Surfaces of Deep Networks
The primary challenge in optimizing deep learning models is that we are forced to
use minimal local information to infer the global structure of the error surface. This
is a hard problem because there is usually very little correspondence between local
and global structure. Take the following analogy as an example.

Let’s assume you’re an ant on the continental United States. You’re dropped randomly
on the map, and your goal is to find the lowest point on this surface. How do you do
it? If all you can observe is your immediate surroundings, this seems like an intracta‐
ble problem. If the surface of the US was bowl shaped (or mathematically speaking,
convex) and we were smart about our learning rate, we could use the gradient descent
algorithm to eventually find the bottom of the bowl. But the surface of the US is
extremely complex, that is to say, is a nonconvex surface, which means that even if we
find a valley (a local minimum), we have no idea if it’s the lowest valley on the map
(the global minimum). In Chapter 2, we talked about how a mini-batch version of
gradient descent can help navigate a troublesome error surface when there are spuri‐
ous regions of magnitude zero gradients. But as we can see in Figure 4-1, even a sto‐
chastic error surface won’t save us from a deep local minimum.

Figure 4-1. Mini-batch gradient descent may aid in escaping shallow local minima, but
often fails when dealing with deep local minima, as shown

Now comes the critical question. Theoretically, local minima pose a significant
issue. But in practice, how common are local minima in the error surfaces of deep
networks? And in which scenarios are they actually problematic for training? In the
following two sections, we’ll pick apart common misconceptions about local minima.

64 | Chapter 4: Beyond Gradient Descent

Model Identifiability
The first source of local minima is tied to a concept commonly referred to as model
identifiability. One observation about deep neural networks is that their error surfa‐
ces are guaranteed to have a large—and in some cases, an infinite—number of local
minima. There are two major reasons this observation is true.

The first is that within a layer of a fully-connected feed-forward neural network, any
rearrangement of neurons will still give you the same final output at the end of the
network. We illustrate this using a simple three-neuron layer in Figure 4-2. As a
result, within a layer with n neurons, there are n! ways to rearrange parameters. And
for a deep network with l layers, each with n neurons, we have a total of n!l equivalent
configurations.

Figure 4-2. Rearranging neurons in a layer of a neural network results in equivalent con‐
figurations due to symmetry

In addition to the symmetries of neuron rearrangements, non-identifiability is
present in other forms in certain kinds of neural networks. For example, there is an
infinite number of equivalent configurations that for an individual ReLU neuron
result in equivalent networks. Because an ReLU uses a piecewise linear function, we
are free to multiply all of the incoming weights by any nonzero constant k while scal‐
ing all of the outgoing weights by 1

k without changing the behavior of the network.
We leave the justification for this statement as an exercise for the active reader.

Model Identifiability | 65

2 Goodfellow, Ian J., Oriol Vinyals, and Andrew M. Saxe. “Qualitatively characterizing neural network optimi‐
zation problems.” arXiv preprint arXiv:1412.6544 (2014).

Ultimately, however, local minima that arise because of the non-identifiability of deep
neural networks are not inherently problematic. This is because all nonidentifiable
configurations behave in an indistinguishable fashion no matter what input values
they are fed. This means they will achieve the same error on the training, validation,
and testing datasets. In other words, all of these models will have learned equally
from the training data and will have identical behavior during generalization to
unseen examples.

Instead, local minima are only problematic when they are spurious. A spurious local
minimum corresponds to a configuration of weights in a neural network that incurs a
higher error than the configuration at the global minimum. If these kinds of local
minima are common, we quickly run into significant problems while using gradient-
based optimization methods because we can only take into account local structure.

How Pesky Are Spurious Local Minima in Deep Networks?
For many years, deep learning practitioners blamed all of their troubles in training
deep networks on spurious local minima, albeit with little evidence. Today, it remains
an open question whether spurious local minima with a high error rate relative to the
global minimum are common in practical deep networks. However, many recent
studies seem to indicate that most local minima have error rates and generalization
characteristics that are very similar to global minima.

One way we might try to naively tackle this problem is by plotting the value of the
error function over time as we train a deep neural network. This strategy, however,
doesn’t give us enough information about the error surface because it is difficult to
tell whether the error surface is “bumpy,” or whether we merely have a difficult time
figuring out which direction we should be moving in.

To more effectively analyze this problem, Goodfellow et al. (a team of researchers col‐
laborating between Google and Stanford) published a paper in 2014 that attempted to
separate these two potential confounding factors.2 Instead of analyzing the error
function over time, they cleverly investigated what happens on the error surface
between a randomly initialized parameter vector and a successful final solution by
using linear interpolation. So given a randomly initialized parameter vector θi and
stochastic gradient descent (SGD) solution θ f , we aim to compute the error function
at every point along the linear interpolation θα = α · θ f + 1 − α · θi.

In other words, they wanted to investigate whether local minima would hinder our
gradient-based search method even if we knew which direction to move in. They

66 | Chapter 4: Beyond Gradient Descent

showed that for a wide variety of practical networks with different types of neurons,
the direct path between a randomly initialized point in the parameter space and a sto‐
chastic gradient descent solution isn’t plagued with troublesome local minima.

We can even demonstrate this ourselves using the feed-foward ReLU network we
built in Chapter 3. Using a checkpoint file that we saved while training our original
feed-forward network, we can re-instantiate the inference and loss components
while also maintaining a list of pointers to the variables in the original graph for
future use in var_list_opt (where opt stands for the optimal parameter settings):

mnist data image of shape 28*28=784
x = tf.placeholder("float", [None, 784])
0-9 digits recognition => 10 classes
y = tf.placeholder("float", [None, 10])

sess = tf.Session()

with tf.variable_scope("mlp_model") as scope:
 output_opt = inference(x)
 cost_opt = loss(output_opt, y)
 saver = tf.train.Saver()
 scope.reuse_variables()
 var_list_opt = [
 "hidden_1/W",
 "hidden_1/b",
 "hidden_2/W",
 "hidden_2/b",
 "output/W",
 "output/b"
]
 var_list_opt = [tf.get_variable(v) for v in var_list_opt]
 saver.restore(sess, "mlp_logs/model-checkpoint-file")

Similarly, we can reuse the component constructors to create a randomly initialized
network. Here we store the variables in var_list_rand for the next step of our pro‐
gram:

with tf.variable_scope("mlp_init") as scope:
 output_rand = inference(x)
 cost_rand = loss(output_rand, y)
 scope.reuse_variables()
 var_list_rand = [
 "hidden_1/W",
 "hidden_1/b",
 "hidden_2/W",
 "hidden_2/b",
 "output/W",
 "output/b"
]
 var_list_rand = [tf.get_variable(v) for v in var_list_rand]

How Pesky Are Spurious Local Minima in Deep Networks? | 67

 init_op = tf.initialize_variables(var_list_rand)
 sess.run(init_op)

With these two networks appropriately initialized, we can now construct the linear
interpolation using the mixing parameters alpha and beta:

with tf.variable_scope("mlp_inter") as scope:

 alpha = tf.placeholder("float", [1, 1])
 beta = 1 - alpha

 h1_W_inter = var_list_opt[0] * beta + var_list_rand[0] * alpha
 h1_b_inter = var_list_opt[1] * beta + var_list_rand[1] * alpha
 h2_W_inter = var_list_opt[2] * beta + var_list_rand[2] * alpha
 h2_b_inter = var_list_opt[3] * beta + var_list_rand[3] * alpha
 o_W_inter = var_list_opt[4] * beta + var_list_rand[4] * alpha
 o_b_inter = var_list_opt[5] * beta + var_list_rand[5] * alpha

 h1_inter = tf.nn.relu(tf.matmul(x, h1_W_inter) + h1_b_inter)
 h2_inter = tf.nn.relu(tf.matmul(h1_inter, h2_W_inter) + h2_b_inter)
 o_inter = tf.nn.relu(tf.matmul(h2_inter, o_W_inter) + o_b_inter)

 cost_inter = loss(o_inter, y)

Finally, we can vary the value of alpha to understand how the error surface changes
as we traverse the line between the randomly initialized point and the final SGD solu‐
tion:

import matplotlib.pyplot as plt

summary_writer = tf.train.SummaryWriter("linear_interp_logs/",
 graph_def=sess.graph_def)
summary_op = tf.merge_all_summaries()
results = []
for a in np.arange(-2, 2, 0.01):
 feed_dict = {
 x: mnist.test.images,
 y: mnist.test.labels,
 alpha: [[a]],
 }
 cost, summary_str = sess.run([cost_inter, summary_op],
 feed_dict=feed_dict)
 summary_writer.add_summary(summary_str, (a + 2)/0.01)
 results.append(cost)

plt.plot(np.arange(-2, 2, 0.01), results, 'ro')
plt.ylabel('Incurred Error')
plt.xlabel('Alpha')
plt.show()

68 | Chapter 4: Beyond Gradient Descent

This creates Figure 4-3, which we can inspect ourselves. In fact, if we run this experi‐
ment over and over again, we find that there are no truly troublesome local minima
that would get us stuck. In other words, it seems that the true struggle of gradient
descent isn’t the existence of troublesome local minima, but instead, is that we have a
tough time finding the appropriate direction to move in. We’ll return to this thought
a little later.

Figure 4-3. The cost function of a three-layer feed-forward network as we linearly inter‐
polate on the line connecting a randomly initialized parameter vector and an SGD solu‐
tion

Flat Regions in the Error Surface
Although it seems that our analysis is devoid of troublesome local minimum, we do
notice a peculiar flat region where the gradient approaches zero when we get to
approximately alpha=1. This point is not a local minima, so it is unlikely to get us
completely stuck, but it seems like the zero gradient might slow down learning if we
are unlucky enough to encounter it.

More generally, given an arbitrary function, a point at which the gradient is the zero
vector is called a critical point. Critical points come in various flavors. We’ve already
talked about local minima. It’s also not hard to imagine their counterparts, the local
maxima, which don’t really pose much of an issue for SGD. But then there are these
strange critical points that lie somewhere in-between. These “flat” regions that are
potentially pesky but not necessarily deadly are called saddle points. It turns out that

Flat Regions in the Error Surface | 69

as our function has more and more dimensions (i.e., we have more and more param‐
eters in our model), saddle points are exponentially more likely than local minima.
Let’s try to intuit why.

For a one-dimensional cost function, a critical point can take one of three forms, as
shown in Figure 4-4. Loosely, let’s assume each of these three configurations is
equally likely. This means given a random critical point in a random one-dimensional
function, it has one-third probability of being a local minimum. This means that if we
have a total of k critical points, we can expect to have a total of k

3 local minima.

Figure 4-4. Analyzing a critical point along a single dimension

We can also extend this to higher dimensional functions. Consider a cost function
operating in a d-dimensional space. Let’s take an arbitrary critical point. It turns out
that figuring out if this point is a local minimum, local maximum, or a saddle point is
a little bit trickier than in the one-dimensional case. Consider the error surface
in Figure 4-5. Depending on how you slice the surface (from A to B or from C to D),
the critical point looks like either a minimum or a maximum. In reality, it’s neither.
It’s a more complex type of saddle point.

Figure 4-5. A saddle point over a two-dimensional error surface

70 | Chapter 4: Beyond Gradient Descent

3 Dauphin, Yann N., et al. “Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization.” Advances in Neural Information Processing Systems. 2014.

In general, in a d-dimensional parameter space, we can slice through a critical point
on d different axes. A critical point can only be a local minimum if it appears as a
local minimum in every single one of the d one-dimensional subspaces. Using the
fact that a critical point can come in one of three different flavors in a one-
dimensional subspace, we realize that the probability that a random critical point is in
a random function is 1

3d . This means that a random function function with k critical

points has an expected number of k

3d local minima. In other words, as the dimension‐

ality of our parameter space increases, local minima become exponentially more rare.
A more rigorous treatment of this topic is outside the scope of this book, but is
explored more extensively by Dauphin et al. in 2014.3

So what does this mean for optimizing deep learning models? For stochastic gradient
descent, it’s still unclear. It seems like these flat segments of the error surface are pesky
but ultimately don’t prevent stochastic gradient descent from converging to a good
answer. However, it does pose serious problems for methods that attempt to directly
solve for a point where the gradient is zero. This has been a major hindrance to the
usefulness of certain second-order optimization methods for deep learning models,
which we will discuss later.

When the Gradient Points in the Wrong Direction
Upon analyzing the error surfaces of deep networks, it seems like the most critical
challenge to optimizing deep networks is finding the correct trajectory to move in. It’s
no surprise, however, that this is a major challenge when we look at what happens to
the error surface around a local minimum. As an example, we consider an error sur‐
face defined over a two-dimensional parameter space, as shown in Figure 4-6.

When the Gradient Points in the Wrong Direction | 71

Figure 4-6. Local information encoded by the gradient usually does not corroborate the
global structure of the error surface

Revisiting the contour diagrams we explored in Chapter 2, we notice that the gradient
isn’t usually a very good indicator of the good trajectory. Specifically, we realize that
only when the contours are perfectly circular does the gradient always point in the
direction of the local minimum. However, if the contours are extremely elliptical (as
is usually the case for the error surfaces of deep networks), the gradient can be as
inaccurate as 90 degrees away from the correct direction!

We extend this analysis to an arbitrary number of dimensions using some mathemat‐
ical formalism. For every weight wi in the parameter space, the gradient computes the
value of ∂E

∂wi
, or how the value of the error changes as we change the value of wi.

Taken together over all weights in the parameter space, the gradient gives us the
direction of steepest descent. The general problem with taking a significant step in
this direction, however, is that the gradient could be changing under our feet as we
move! We demonstrate this simple fact in Figure 4-7. Going back to the two-
dimensional example, if our contours are perfectly circular and we take a big step in
the direction of the steepest descent, the gradient doesn’t change direction as we
move. However, this is not the case for highly elliptical contours.

72 | Chapter 4: Beyond Gradient Descent

Figure 4-7. We show how the direction of the gradient changes as we move along the
direction of steepest descent (as determined from a starting point). The gradient vectors
are normalized to identical length to emphasize the change in direction of the gradient
vector.

More generally, we can quantify how the gradient changes under our feet as we move
in a certain direction by computing second derivatives. Specifically, we want to meas‐

ure
∂ ∂E/∂wj

∂wi
, which tells us how the gradient component for w j changes as we change

the value of wi. We can compile this information into a special matrix known as the
Hessian matrix (H). And when describing an error surface where the gradient
changes underneath our feet as we move in the direction of steepest descent, this
matrix is said to be ill-conditioned.

For the mathematically inclined reader, we go into slightly more detail about how the
Hessian limits optimization purely by gradient descent. Certain properties of the Hes‐
sian matrix (specifically that it is real and symmetric) allow us to efficiently determine
the second derivative (which approximates the curvature of a surface) as we move in
a specific direction. Specifically, if we have a unit vector d, the second derivative in
that direction is given by dHd. We can now use a second-order approximation via
Taylor series to understand what happens to the error function as we step from the
current parameter vector x(i) to a new parameter vector x along gradient vector
g evaluated at x(i):

 E � ≈ E � i + � − � i ⊤
� + 1

2 � − � i ⊤
� � − � i

When the Gradient Points in the Wrong Direction | 73

If we go further to state that we will be moving � units in the direction of the gradient,
we can further simplify our expression:

 E � i − �� ≈ E � i − ��⊤� + 1
2�

2�⊤Hg

This expression consists of three terms: 1) the value of the error function at the origi‐
nal parameter vector, 2) the improvement in error afforded by the magnitude of the
gradient, and 3) a correction term that incorporates the curvature of the surface as
represented by the Hessian matrix.

In general, we should be able to use this information to design better optimization
algorithms. For instance, we can even naively take the second order approximation of
the error function to determine the learning rate at each step that maximizes the
reduction in the error function. It turns out, however, that computing the Hessian
matrix exactly is a difficult task. In the next several sections, we’ll describe optimiza‐
tion breakthroughs that tackle ill-conditioning without directly computing the Hes‐
sian matrix.

Momentum-Based Optimization
Fundamentally, the problem of an ill-conditioned Hessian matrix manifests itself in
the form of gradients that fluctuate wildly. As a result, one popular mechanism for
dealing with ill-conditioning bypasses the computation of the Hessian, and instead,
focuses on how to cancel out these fluctuations over the duration of training.

One way to think about how we might tackle this problem is by investigating how a
ball rolls down a hilly surface. Driven by gravity, the ball eventually settles into a min‐
imum on the surface, but for some reason, it doesn’t suffer from the wild fluctuations
and divergences that happen during gradient descent. Why is this the case? Unlike in
stochastic gradient descent (which only uses the gradient), there are two major com‐
ponents that determine how a ball rolls down an error surface. The first, which we
already model in SGD as the gradient, is what we commonly refer to as acceleration.
But acceleration does not single-handedly determine the ball’s movements. Instead,
its motion is more directly determined by its velocity. Acceleration only indirectly
changes the ball’s position by modifying its velocity.

Velocity-driven motion is desirable because it counteracts the effects of a wildly fluc‐
tuating gradient by smoothing the ball’s trajectory over its history. Velocity serves as a
form of memory, and this allows us to more effectively accumulate movement in the
direction of the minimum while canceling out oscillating accelerations in orthogonal
directions. Our goal, then, is to somehow generate an analog for velocity in our opti‐
mization algorithm. We can do this by keeping track of an exponentially weighted
decay of past gradients. The premise is simple: every update is computed by combin‐
ing the update in the last iteration with the current gradient. Concretely, we compute
the change in the parameter vector as follows:

74 | Chapter 4: Beyond Gradient Descent

4 Polyak, Boris T. “Some methods of speeding up the convergence of iteration methods.” USSR Computational
Mathematics and Mathematical Physics 4.5 (1964): 1-17.

 �i = m�i − 1 − ��i

 θi = θi − 1 + �i

In other words, we use the momentum hyperparameter m to determine what frac‐
tion of the previous velocity to retain in the new update, and add this “memory” of
past gradients to our current gradient. This approach is commonly referred to
as momentum.4 Because the momentum term increases the step size we take, using
momentum may require a reduced learning rate compared to vanilla stochastic gradi‐
ent descent.

To better visualize how momentum works, we’ll explore a toy example. Specifically,
we’ll investigate how momentum affects updates during a random walk. A random
walk is a succession of randomly chosen steps. In our example, we’ll imagine a parti‐
cle on a line that, at every time interval, randomly picks a step size between -10 and
10 and takes a moves in that direction. This is simply expressed as:

step_range = 10
step_range = 10step_choices = range(-1 * step_range,
 step_range + 1)
rand_walk = [random.choice(step_choices) for x in xrange(100)]

We’ll then simulate what happens when we use a slight modification of momentum
(i.e., the standard exponentially weighted moving average algorithm) to smooth our
choice of step at every time interval. Again, we can concisely express this as:

momentum_rand_walk = [random.choice(step_choices)]
for i in xrange(len(rand_walk) - 1):
 prev = momentum_rand_walk[-1]
 rand_choice = random.choice(step_choices)
 new_step = momentum * prev + (1 - momentum) * rand_choice
 momentum_rand_walk.append()

The results, as we vary the momentum from 0 to 1, are quite staggering. Momentum
significantly reduces the volatility of updates. The larger the momentum, the less
responsive we are to new updates (e.g., a large inaccuracy on the first estimation of
trajectory propagates for a significant period of time). We summarize the results of
our toy experiment in Figure 4-8.

Momentum-Based Optimization | 75

Figure 4-8. Momentum smooths volatility in the step sizes during a random walk using
an exponentially weighted moving average

To investigate how momentum actually affects the training of feedforward neural
networks, we can retrain our trusty MNIST feedforward network with a TensorFlow
momentum optimizer. In this case we can get away with using the same learning rate
(0.01) with a typical momentum of 0.9:

learning_rate = 0.01
momentum = 0.9
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
train_op = optimizer.minimize(cost, global_step=global_step)

The resulting speedup is staggering. We display how the cost function changes over
time by comparing the TensorBoard visualizations in Figure 4-9. The figure demon‐
strates that to achieve a cost of 0.1 without momentum (right) requires nearly 18,000
steps (minibatches), whereas with momentum (left), we require just over 2,000.

Figure 4-9. Comparing training a feed-forward network with (right) and without (left)
momentum demonstrates a massive decrease in training time

76 | Chapter 4: Beyond Gradient Descent

5 Sutskever, Ilya, et al. “On the importance of initialization and momentum in deep learning.” ICML (3) 28
(2013): 1139-1147.

6 Møller, Martin Fodslette. “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.” Neural Net‐
works 6.4 (1993): 525-533.

Recently, more work has been done exploring how the classical momentum techni‐
que can be improved. Sutskever et al. in 2013 proposed an alternative called Nesterov
momentum, which computes the gradient on the error surface at θ + �i − 1 during the
velocity update instead of at θ.5 This subtle difference seems to allow Nesterov
momentum to change its velocity in a more responsive way. It’s been shown that this
method has clear benefits in batch gradient descent (convergence guarantees and the
ability to use a higher momentum for a given learning rate as compared to classical
momentum), but it’s not entirely clear whether this is true for the more stochastic
mini-batch gradient descent used in most deep learning optimization approaches.
Support for Nerestov momentum is not yet available out of the box in TensorFlow as
of the writing of this text.

A Brief View of Second-Order Methods
As we discussed in previous sections, computing the Hessian is a computationally dif‐
ficult task, and momentum afforded us significant speedup without having to worry
about it altogether. Several second-order methods, however, have been researched
over the past several years that attempt to approximate the Hessian directly. For com‐
pleteness, we give a broad overview of these methods, but a detailed treatment is
beyond the scope of this text.

The first is conjugate gradient descent, which arises out of attempting to improve on
a naive method of steepest descent. In steepest descent, we compute the direction of
the gradient and then line search to find the minimum along that direction. We jump
to the minimum and then recompute the gradient to determine the direction of the
next line search. It turns out that this method ends up zigzagging a significant
amount, as shown in Figure 4-9, because each time we move in the direction of steep‐
est descent, we undo a little bit of progress in another direction. A remedy to this
problem is moving in a conjugate direction relative to the previous choice instead of
the direction of steepest descent. The conjugate direction is chosen by using an indi‐
rect approximation of the Hessian to linearly combine the gradient and our previous
direction. With a slight modification, this method generalizes to the nonconvex error
surfaces we find in deep networks.6

A Brief View of Second-Order Methods | 77

7 Broyden, C. G. “A new method of solving nonlinear simultaneous equations.” The Computer Journal 12.1
(1969): 94-99.

8 Bonnans, Joseph-Frédéric, et al. Numerical Optimization: Theoretical and Practical Aspects. Springer Science &
Business Media, 2006.

Figure 4-10. The method of steepest descent often zigzags; conjugate descent attempts to
remedy this issue

An alternative optimization algorithm known as the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm attempts to compute the inverse of the Hessian matrix iter‐
atively and use the inverse Hessian to more effectively optimize the parameter vector.7

In its original form, BFGS has a significant memory footprint, but recent work has
produced a more memory-efficient version known as L-BFGS.8

In general, while these methods hold some promise, second-order methods are still
an area of active research and are unpopular among practitioners. TensorFlow does
not currently support either conjugate gradient descent or L-BFGS at the time of
writing this text, although these features seem to be in the development pipeline.

Learning Rate Adaptation
As we have discussed previously, another major challenge for training deep networks
is appropriately selecting the learning rate. Choosing the correct learning rate has
long been one of the most troublesome aspects of training deep networks because it
has a major impact on a network’s performance. A learning rate that is too small

78 | Chapter 4: Beyond Gradient Descent

9 Duchi, John, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for Online Learning and Sto‐
chastic Optimization.” Journal of Machine Learning Research 12.Jul (2011): 2121-2159.

doesn’t learn quickly enough, but a learning rate that is too large may have difficulty
converging as we approach a local minimum or region that is ill-conditioned.

One of the major breakthroughs in modern deep network optimization was the
advent of learning rate adaption. The basic concept behind learning rate adaptation is
that the optimal learning rate is appropriately modified over the span of learning to
achieve good convergence properties. Over the next several sections, we’ll discuss
AdaGrad, RMSProp, and Adam, three of the most popular adaptive learning rate
algorithms.

AdaGrad—Accumulating Historical Gradients
The first algorithm we’ll discuss is AdaGrad, which attempts to adapt the global
learning rate over time using an accumulation of the historical gradients, first pro‐
posed by Duchi et al. in 2011.9 Specifically, we keep track of a learning rate for each
parameter. This learning rate is inversely scaled with respect to the square root of the
sum of the squares (root mean square) of all the parameter’s historical gradients.

We can express this mathematically. We initialize a gradient accumulation vec‐
tor �0 = 0. At every step, we accumulate the square of all the gradient parameters as
follows (where the ⊙ operation is element-wise tensor multiplication):

 �i = �i − 1 + �i⊙ �i

Then we compute the update as usual, except our global learning rate � is divided by
the square root of the gradient accumulation vector:

 θi = θi − 1 − �

δ ⊕ �i
⊙ �

Note that we add a tiny number δ (~10−7) to the denominator in order to prevent
division by zero. Also, the division and addition operations are broadcast to the size
of the gradient accumulation vector and applied element-wise. In TensorFlow, a built-
in optimizer allows for easily utilizing AdaGrad as a learning algorithm:

tf.train.AdagradOptimizer(learning_rate,
 initial_accumulator_value=0.1,
 use_locking=False,
 name='Adagrad')

The only hitch is that in TensorFlow, the δ and initial gradient accumulation vector
are rolled together into the initial_accumulator_value argument.

Learning Rate Adaptation | 79

10 Tieleman, Tijmen, and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude.” COURSERA: Neural Networks for Machine Learning 4.2 (2012).

On a functional level, this update mechanism means that the parameters with the
largest gradients experience a rapid decrease in their learning rates, while parameters
with smaller gradients only observe a small decrease in their learning rates. The ulti‐
mate effect is that AdaGrad forces more progress in the more gently sloped directions
on the error surface, which can help overcome ill-conditioned surfaces. This results
in some good theoretical properties, but in practice, training deep learning models
with AdaGrad can be somewhat problematic. Empirically, AdaGrad has a tendency to
cause a premature drop in learning rate, and as a result doesn’t work particularly well
for some deep models. In the next section, we’ll describe RMSProp, which attempts to
remedy this shortcoming.

RMSProp—Exponentially Weighted Moving Average of Gradients
While AdaGrad works well for simple convex functions, it isn’t designed to navigate
the complex error surfaces of deep networks. Flat regions may force AdaGrad to
decrease the learning rate before it reaches a minimum. The conclusion is that simply
using a naive accumulation of gradients isn’t sufficient.

Our solution is to bring back a concept we introduced earlier while discussing
momentum to dampen fluctuations in the gradient. Compared to naive accumula‐
tion, exponentially weighted moving averages also enable us to “toss out” measure‐
ments that we made a long time ago. More specifically, our update to the gradient
accumulation vector is now as follows:

 �i = ρ�i − 1 + 1 − ρ �i⊙ �i

The decay factor ρ determines how long we keep old gradients. The smaller the decay
factor, the shorter the effective window. Plugging this modification into AdaGrad
gives rise to the RMSProp learning algorithm, first proposed by Geoffrey Hinton.10

In TensorFlow, we can instantiate the RMSProp optimizer with the following code.
We note that in this case, unlike in Adagrad, we pass in δ separately as the epsilon
argument to the constructor:

tf.train.RMSPropOptimizer(learning_rate, decay=0.9,
 momentum=0.0, epsilon=1e-10,
 use_locking=False, name='RMSProp')

As the template suggests, we can utilize RMSProp with momentum (specifically Ner‐
estov momentum). Overall, RMSProp has been shown to be a highly effective opti‐
mizer for deep neural networks, and is a default choice for many seasoned
practitioners.

80 | Chapter 4: Beyond Gradient Descent

11 Kingma, Diederik, and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” arXiv preprint arXiv:
1412.6980 (2014).

Adam—Combining Momentum and RMSProp
Before concluding our discussion of modern optimizers, we discuss one final algo‐
rithm—Adam.11 Spiritually, we can think about Adam as a variant combination of
RMSProp and momentum.

The basic idea is as follows. We want to keep track of an exponentially weighted mov‐
ing average of the gradient (essentially the concept of velocity in classical momen‐
tum), which we can express as follows:

 mi = β1mi-1 + (1-β1)gi

This is our approximation of what we call the first moment of the gradient, or
𝔼[gi]. And similarly to RMSProp, we can maintain an exponentially weighted moving
average of the historical gradients. This is our estimation of what we call the second
moment of the gradient, or 𝔼[gi ⊙ gi]:

 �i = β2�i − 1 + 1 − β2 �i⊙ �i

However, it turns out these estimations are biased relative to the real moments
because we start off by initializing both vectors to the zero vector. In order to remedy
this bias, we derive a correction factor for both estimations. Here, we describe the
derivation for the estimation of the second moment. The derivation for the first
moment, which is analogous to the derivation here, is left as an exercise for the math‐
ematically inclined reader.

We begin by expressing the estimation of the second moment in terms of all past gra‐
dients. This is done by simply expanding the recurrence relationship:

 �i = β2�i − 1 + 1 − β2 �i⊙ �i

 �i = β2
i − 1 1 − β2 �1⊙ �1 + β2

i − 2 1 − β2 �2⊙ �2 + ... + 1 − β2 �i⊙ �i

 �i = 1 − β2 ∑k = 1
i βi − k�k⊙ �k

We can then take the expected value of both sides to determine how our estimation
𝔼[vi] compares to the real value of 𝔼[gi ⊙ gi]:

 𝔼[vi] = 𝔼 1 − β2 ∑k = 1
i βi − k�k⊙ �k

We can also assume that 𝔼[gk ⊙ gk] ≈ 𝔼[gi ≈ gi], because even if the second moment
of the gradient has changed since a historical value, β2 should be chosen so that the
old second moments of the gradients are essentially decayed out of relevancy. As a
result, we can make the following simplification:

Learning Rate Adaptation | 81

 𝔼[vi] ≈ 𝔼[gi ⊙ gi] 1 − β2 ∑k = 1
i βi − k

 𝔼[vi] ≈ 𝔼[gi ⊙ gi](1-β2
i)

Note that we make the final simplification using the elementary algebraic iden‐
tity 1 − xn = 1 − x 1 + x + ... + xn − 1 . The results of this derivation and the analo‐
gous derivation for the first moment are the following correction schemes to account
for the initialization bias:

 m̃i =
mi

1 − β1
i

 �i =
�i

1 − β2
i

We can then use these corrected moments to update the parameter vector, resulting
in the final Adam update:

 θi = θi − 1 − �

δ ⊕ �i
m̃i

Recently, Adam has gained popularity because of its corrective measures against the
zero initialization bias (a weakness of RMSProp) and its ability to combine the core
concepts behind RMSProp with momentum more effectively. TensorFlow exposes the
Adam optimizer through the following constructor:

tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9,
 beta2=0.999, epsilon=1e-08,
 use_locking=False, name='Adam')

The default hyperparameter settings for Adam for TensorFlow generally perform
quite well, but Adam is also generally robust to choices in hyperparameters. The only
exception is that the learning rate may need to be modified in certain cases from the
default value of 0.001.

82 | Chapter 4: Beyond Gradient Descent

The Philosophy Behind Optimizer Selection
In this chapter, we’ve discussed several strategies that are used to make navigating the
complex error surfaces of deep networks more tractable. These strategies have culmi‐
nated in several optimization algorithms, each with its own benefits and shortcom‐
ings.

While it would be awfully nice to know when to use which algorithm, there is very
little consensus among expert practitioners. Currently, the most popular algorithms
are mini-batch gradient descent, mini-batch gradient with momentum, RMSProp,
RMSProp with momentum, Adam, and AdaDelta (which we haven’t discussed here,
and is not currently supported by TensorFlow as of the writing of this text). We
include a TensorFlow script in the Github repository for this text for the curious
reader to experiment with these optimization algorithms on the feed-forward net‐
work model we built:

$ python optimzer_mlp.py <sgd, momentum, adagrad, rmsprop,
 adam>

One important point, however, is that for most deep learning practitioners, the best
way to push the cutting edge of deep learning is not by building more advanced opti‐
mizers. Instead, the vast majority of breakthroughs in deep learning over the past sev‐
eral decades have been obtained by discovering architectures that are easier to train
instead of trying to wrangle with nasty error surfaces. We’ll begin focusing on how to
leverage architecture to more effectively train neural networks in the rest of this
book.

Summary
In this chapter, we discussed several challenges that arise when trying to train deep
networks with complex error surfaces. We discussed how while the challenges of spu‐
rious local minima may likely be exaggerated, saddle points and ill-conditioning do
pose a serious threat to the success of vanilla mini-batch gradient descent. We
described how momentum can be used to overcome ill-conditioning, and briefly dis‐
cussed recent research in second-order methods to approximate the Hessian matrix.
We also described the evolution of adaptive learning rate optimizers, which tune the
learning rate during the training process for better convergence.

In the next chapter, we’ll begin tackling the larger issue of network architecture and
design. We’ll begin by exploring computer vision and how we might design deep net‐
works that learn effectively from complex images.

The Philosophy Behind Optimizer Selection | 83

1 Hubel, David H., and Torsten N. Wiesel. “Receptive fields and functional architecture of monkey striate cor‐
tex.” The Journal of Physiology 195.1 (1968): 215-243.

2 Cohen, Adolph I. “Rods and Cones.” Physiology of Photoreceptor Organs. Springer Berlin Heidelberg, 1972.
63-110.

CHAPTER 5

Convolutional Neural Networks

Neurons in Human Vision
The human sense of vision is unbelievably advanced. Within fractions of seconds, we
can identify objects within our field of view, without thought or hesitation. Not only
can we name objects we are looking at, we can also perceive their depth, perfectly dis‐
tinguish their contours, and separate the objects from their backgrounds. Somehow
our eyes take in raw voxels of color data, but our brain transforms that information
into more meaningful primitives—lines, curves, and shapes—that might indicate, for
example, that we’re looking at a house cat.1

Foundational to the human sense of vision is the neuron. Specialized neurons are
responsible for capturing light information in the human eye.2 This light information
is then preprocessed, transported to the visual cortex of the brain, and then finally
analyzed to completion. Neurons are single-handedly responsible for all of these
functions. As a result, intuitively, it would make a lot of sense to extend our neural
network models to build better computer vision systems. In this chapter, we will use
our understanding of human vision to build effective deep learning models for image
problems. But before we jump in, let’s take a look at more traditional approaches to
image analysis and why they fall short.

85

3 Viola, Paul, and Michael Jones. “Rapid Object Detection using a Boosted Cascade of Simple Features.” Com‐
puter Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Con‐
ference on. Vol. 1. IEEE, 2001.

The Shortcomings of Feature Selection
Let’s begin by considering a simple computer vision problem. I give you a randomly
selected image, such as the one in Figure 5-1. Your task is to tell me if there is a
human face in this picture. This is exactly the problem that Paul Viola and Michael
Jones tackled in their seminal paper published in 2001.3

Figure 5-1. A hypothetical face-recognition algorithm should detect a face in this photo‐
graph of former President Barack Obama

For a human like you or me, this task is completely trivial. For a computer, however,
this is a very difficult problem. How do we teach a computer that an image contains a
face? We could try to train a traditional machine learning algorithm (like the one we
described in the Chapter 1) by giving it the raw pixel values of the image and hoping
it can find an appropriate classifier. Turns out this doesn’t work very well at all
because the signal-to-noise ratio is much too low for any useful learning to occur. We
need an alternative.

The compromise that was eventually reached was essentially a trade-off between the
traditional computer program, where the human defined all of the logic, and a pure

86 | Chapter 5: Convolutional Neural Networks

machine learning approach, where the computer did all of the heavy lifting. In this
compromise, a human would choose the features (perhaps hundreds or thousands)
that he or she believed were important in making a classification decision. In doing
so, the human would be producing a lower-dimensional representation of the same
learning problem. The machine learning algorithm would then use these new feature
vectors to make classification decisions. Because the feature extraction process
improves the signal-to-noise ratio (assuming the appropriate features are picked),
this approach had quite a bit of success compared to the state of the art at the time.

Viola and Jones had the insight that faces had certain patterns of light and dark
patches that they could exploit. For example, there is a difference in light intensity
between the eye region and the upper cheeks. There is also a difference in light inten‐
sity between the nose bridge and the two eyes on either side. These detectors are
shown in Figure 5-2.

Figure 5-2. An illustration of Viola-Jones intensity detectors

By themselves, each of these features is not very effective at identifying a face. But
when used together (through a classic machine learning algorithm known as boost‐
ing, described in the original manuscript), their combined effectiveness drastically
increases. On a dataset of 130 images and 507 faces, the algorithm achieves a 91.4%
detection rate with 50 false positives. The performance was unparalleled at the time,

The Shortcomings of Feature Selection | 87

http://bit.ly/2qMguNT

4 Deng, Jia, et al. “ImageNet: A Large-Scale Hierarchical Image Database.” Computer Vision and Pattern Recog‐
nition, 2009. CVPR 2009. IEEE Conference. IEEE, 2009.

5 Perronnin, Florent, Jorge Sénchez, and Yan Liu Xerox. “Large-scale image categorization with explicit data
embedding.” Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference. IEEE, 2010.

but there are fundamental limitations of the algorithm. If a face is partially covered
with shade, the light intensity comparisons no longer work. Moreover, if the algo‐
rithm is looking at a face on a crumpled flier or the face of a cartoon character, it
would most likely fail.

The problem is the algorithm hasn’t really learned that much about what it means to
“see” a face. Beyond differences in light intensity, our brain uses a vast number of vis‐
ual cues to realize that our field of view contains a human face, including contours,
relative positioning of facial features, and color. And even if there are slight discrep‐
ancies in one of our visual cues (for example, if parts of the face are blocked from
view or if shade modifies light intensities), our visual cortex can still reliably identify
faces.

In order to use traditional machine learning techniques to teach a computer to “see,”
we need to provide our program with a lot more features to make accurate decisions.
Before the advent of deep learning, huge teams of computer vision researchers would
take years to debate about the usefulness of different features. As the recognition
problems became more and more intricate, researchers had a difficult time coping
with the increase in complexity.

To illustrate the power of deep learning, consider the ImageNet challenge, one of the
most prestigious benchmarks in computer vision (sometimes even referred to as the
Olympics of computer vision).4 Every year, researchers attempt to classify images into
one of 200 possible classes given a training dataset of approximately 450,000 images.
The algorithm is given five guesses to get the right answer before it moves onto the
next image in the test dataset. The goal of the competition is to push the state of the
art in computer vision to rival the accuracy of human vision itself (approximately 95–
96%). In 2011, the winner of the ImageNet benchmark had an error rate of 25.7%,
making a mistake on one out of every four images.5 Definitely a huge improvement
over random guessing, but not good enough for any sort of commercial application.
Then in 2012, Alex Krizhevsky from Geoffrey Hinton’s lab at the University of Tor‐
onto did the unthinkable. Pioneering a deep learning architecture known as a convo‐
lutional neural network for the first time on a challenge of this size and complexity, he
blew the competition out of the water. The runner up in the competition scored a
commendable 26.1% error rate. But AlexNet, over the course of just a few months of
work, completely crushed 50 years of traditional computer vision research with an

88 | Chapter 5: Convolutional Neural Networks

6 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with Deep Convolutional
Neural Networks.” Advances in Neural Information Processing Systems. 2012.

error rate of approximately 16%.6 It would be no understatement to say that AlexNet
single-handedly put deep learning on the map for computer vision, and completely
revolutionized the field.

Vanilla Deep Neural Networks Don’t Scale
The fundamental goal in applying deep learning to computer vision is to remove the
cumbersome, and ultimately limiting, feature selection process. As we discussed in
Chapter 1, deep neural networks are perfect for this process because each layer of a
neural network is responsible for learning and building up features to represent the
input data that it receives. A naive approach might be for us to use a vanilla deep neu‐
ral network using the network layer primitive we designed in Chapter 3 for the
MNIST dataset to achieve the image classification task.

If we attempt to tackle the image classification problem in this way, however, we’ll
quickly face a pretty daunting challenge, visually demonstrated in Figure 5-3. In
MNIST, our images were only 28 x 28 pixels and were black and white. As a result, a
neuron in a fully connected hidden layer would have 784 incoming weights. This
seems pretty tractable for the MNIST task, and our vanilla neural net performed
quite well. This technique, however, does not scale well as our images grow larger. For
example, for a full-color 200 x 200 pixel image, our input layer would have 200 x 200
x 3 = 120,000 weights. And we’re going to want to have lots of these neurons over
multiple layers, so these parameters add up quite quickly! Clearly, this full connectiv‐
ity is not only wasteful, but also means that we’re much more likely to overfit to the
training dataset.

Figure 5-3. The density of connections between layers increases intractably as the size of
the image increases

Vanilla Deep Neural Networks Don’t Scale | 89

7 LeCun, Yann, et al. “Handwritten Digit Recognition with a Back-Propagation Network.” Advances in Neural
Information Processing Systems. 1990.

The convolutional network takes advantage of the fact that we’re analyzing images,
and sensibly constrains the architecture of the deep network so that we drastically
reduce the number of parameters in our model. Inspired by how human vision
works, layers of a convolutional network have neurons arranged in three dimensions,
so layers have a width, height, and depth, as shown in Figure 5-4.7 As we’ll see, the
neurons in a convolutional layer are only connected to a small, local region of the
preceding layer, so we avoid the wastefulness of fully-connected neurons. A convolu‐
tional layer’s function can be expressed simply: it processes a three-dimensional vol‐
ume of information to produce a new three-dimensional volume of information.
We’ll take a closer look at how this works in the next section.

Figure 5-4. Convolutional layers arrange neurons in three dimensions, so layers have
width, height, and depth

Filters and Feature Maps
In order to motivate the primitives of the convolutional layer, let’s build an intuition
for how the human brain pieces together raw visual information into an understand‐
ing of the world around us. One of the most influential studies in this space came
from David Hubel and Torsten Wiesel, who discovered that parts of the visual cortex
are responsible for detecting edges. In 1959, they inserted electrodes into the brain of
a cat and projected black-and-white patterns on the screen. They found that some

90 | Chapter 5: Convolutional Neural Networks

8 Hubel, David H., and Torsten N. Wiesel. “Receptive fields of single neurones in the cat’s striate cortex.” The
Journal of Physiology 148.3 (1959): 574-591.

neurons fired only when there were vertical lines, others when there were horizontal
lines, and still others when the lines were at particular angles.8

Further work determined that the visual cortex was organized in layers. Each layer is
responsible for building on the features detected in the previous layers—from lines,
to contours, to shapes, to entire objects. Furthermore, within a layer of the visual cor‐
tex, the same feature detectors were replicated over the whole area in order to detect
features in all parts of an image. These ideas significantly impacted the design of con‐
volutional neural nets.

The first concept that arose was that of a filter, and it turns out that here, Viola and
Jones were actually pretty close. A filter is essentially a feature detector, and to under‐
stand how it works, let’s consider the toy image in Figure 5-5.

Figure 5-5. We’ll analyze this simple black-and-white image as a toy example

Filters and Feature Maps | 91

Let’s say that we want to detect vertical and horizontal lines in the image. One
approach would be to use an appropriate feature detector, as shown in Figure 5-6. For
example, to detect vertical lines, we would use the feature detector on the top, slide it
across the entirety of the image, and at every step check if we have a match. We keep
track of our answers in the matrix in the top right. If there’s a match, we shade the
appropriate box black. If there isn’t, we leave it white. This result is our feature map,
and it indicates where we’ve found the feature we’re looking for in the original
image. We can do the same for the horizontal line detector (bottom), resulting in the
feature map in the bottom-right corner.

Figure 5-6. Applying filters that detect vertical and horizontal lines on our toy example

This operation is called a convolution. We take a filter and we multiply it over the
entire area of an input image. Using the following scheme, let’s try to express this
operation as neurons in a network. In this scheme, layers of neurons in a feed-
forward neural net represent either the original image or a feature map. Filters repre‐
sent combinations of connections (one such combination is highlighted in
Figure 5-7) that get replicated across the entirety of the input. In Figure 5-7, connec‐
tions of the same color are restricted to always have the same weight. We can achieve
this by initializing all the connections in a group with identical weights and by always
averaging the weight updates of a group before applying them at the end of each iter‐
ation of backpropagation. The output layer is the feature map generated by this filter.
A neuron in the feature map is activated if the filter contributing to its activity detec‐
ted an appropriate feature at the corresponding position in the previous layer.

92 | Chapter 5: Convolutional Neural Networks

Figure 5-7. Representing filters and feature maps as neurons in a convolutional layer

Let’s denote the kth feature map in layer m as mk. Moreover, let’s denote the corre‐
sponding filter by the values of its weights W. Then assuming the neurons in the fea‐
ture map have bias bk (note that the bias is kept identical for all of the neurons in a
feature map), we can mathematically express the feature map as follows:

 mi j
k = f W * x i j + bk

This mathematical description is simple and succinct, but it doesn’t completely
describe filters as they are used in convolutional neural networks. Specifically, filters
don’t just operate on a single feature map. They operate on the entire volume of fea‐
ture maps that have been generated at a particular layer. For example, consider a sit‐
uation in which we would like to detect a face at a particular layer of a convolutional
net. And we have accumulated three feature maps, one for eyes, one for noses, and
one for mouths. We know that a particular location contains a face if the correspond‐
ing locations in the primitive feature maps contain the appropriate features (two eyes,
a nose, and a mouth). In other words, to make decisions about the existence of a face,
we must combine evidence over multiple feature maps. This is equally necessary for
an input image that is of full color. These images have pixels represented as RGB val‐
ues, and so we require three slices in the input volume (one slice for each color). As a
result, feature maps must be able to operate over volumes, not just areas. This is
shown below in Figure 5-8. Each cell in the input volume is a neuron. A local portion
is multiplied with a filter (corresponding to weights in the convolutional layer) to
produce a neuron in a filter map in the following volumetric layer of neurons.

Filters and Feature Maps | 93

Figure 5-8. Representing a full-color RGB image as a volume and applying a volumetric
convolutional filter

As we discussed in the previous section, a convolutional layer (which consists of a set
of filters) converts one volume of values into another volume of values. The depth of
the filter corresponds to the depth of the input volume. This is so that the filter can
combine information from all the features that have been learned. The depth of the
output volume of a convolutional layer is equivalent to the number of filters in that
layer, because each filter produces its own slice. We visualize these relationships
in Figure 5-9.

Figure 5-9. A three-dimensional visualization of a convolutional layer, where each filter
corresponds to a slice in the resulting output volume

In the next section, we will use these concepts and fill in some of the gaps to create a
full description of a convolutional layer.

94 | Chapter 5: Convolutional Neural Networks

Full Description of the Convolutional Layer
Let’s use the concepts we’ve developed so far to complete the description of the con‐
volutional layer. First, a convolutional layer takes in an input volume. This input vol‐
ume has the following characteristics:

• Its width win
• Its height hin
• Its depth din
• Its zero padding p

This volume is processed by a total of k filters, which represent the weights and con‐
nections in the convolutional network. These filters have a number of hyperparame‐
ters, which are described as follows:

• Their spatial extent e, which is equal to the filter’s height and width.
• Their stride s, or the distance between consecutive applications of the filter on the

input volume. If we use a stride of 1, we get the full convolution described in the
previous section. We illustrate this in Figure 5-10.

• The bias b (a parameter learned like the values in the filter) which is added to
each component of the convolution.

Figure 5-10. An illustration of a filter’s stride hyperparameter

This results in an output volume with the following characteristics:

• Its function f , which is applied to the incoming logit of each neuron in the out‐
put volume to determine its final value

• Its width wout =
win − e + 2p

s + 1

Full Description of the Convolutional Layer | 95

• Its height hout =
hin − e + 2p

s + 1

• Its depth dout = k

The mth “depth slice” of the output volume, where 1 ≤ m ≤ k, corresponds to the
function f applied to the sum of the mth filter convoluted over the input volume and
the bias bm. Moreover, this means that per filter, we have dine2 parameters. In total,
that means the layer has kdine2 parameters and k biases. To demonstrate this in
action, we provide an example of a convolutional layer in Figure 5-11 and Figure 5-12
with a 5 x 5 x 3 input volume with zero padding p = 1. We’ll use two 3 x 3 x 3 filters
(spatial extent) with a stride s = 2. We’ll use a linear function to produce the output
volume, which will be of size 3 x 3 x 2.

Figure 5-11. This is a convolutional layer with an input volume that has width 5, height
5, depth 3, and zero padding 1. There are 2 filters, with spatial extent 3 and applied with
a stride of 2. It results in an output volume with width 3, height 3, and depth 2. We
apply the first convolutional filter to the upper-leftmost 3 x 3 piece of the input volume
to generate the upper-leftmost entry of the first depth slice.

96 | Chapter 5: Convolutional Neural Networks

9 https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

Figure 5-12. Using the same setup as Figure 5-11, we generate the next value in the first
depth slice of the output volume.

Generally, it’s wise to keep filter sizes small (size 3 x 3 or 5 x 5). Less commonly, larger
sizes are used (7 x 7) but only in the first convolutional layer. Having more small fil‐
ters is an easy way to achieve high representational power while also incurring a
smaller number of parameters. It’s also suggested to use a stride of 1 to capture all
useful information in the feature maps, and a zero padding that keeps the output vol‐
ume’s height and width equivalent to the input volume’s height and width.

TensorFlow provides us with a convenient operation to easily perform a convolution
on a minibatch of input volumes (note that we must apply our choice of func‐
tion f ourselves and it is not performed by the operation itself):9

tf.nn.conv2d(input, filter, strides, padding,
 use_cudnn_on_gpu=True,
 name=None)

Full Description of the Convolutional Layer | 97

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

10 https://www.tensorflow.org/api_docs/python/tf/nn/max_pool

Here, input is a four-dimensional tensor of size N × hin × win × din, where N is the
number of examples in our minibatch. The filter argument is also a four-
dimensional tensor representing all of the filters applied in the convolution. It is of
size e × e × din × k. The resulting tensor emitted by this operation has the same struc‐
ture as input. Setting the padding argument to "SAME" also selects the zero padding
so that height and width are preserved by the convolutional layer.

Max Pooling
To aggressively reduce dimensionality of feature maps and sharpen the located fea‐
tures, we sometimes insert a max pooling layer after a convolutional layer.10 The
essential idea behind max pooling is to break up each feature map into equally sized
tiles. Then we create a condensed feature map. Specifically, we create a cell for each
tile, compute the maximum value in the tile, and propagate this maximum value into
the corresponding cell of the condensed feature map. This process is illustrated in
Figure 5-13.

Figure 5-13. An illustration of how max pooling significantly reduces parameters as we
move up the network

More rigorously, we can describe a pooling layer with two parameters:

• Its spatial extent e
• Its stride s

98 | Chapter 5: Convolutional Neural Networks

https://www.tensorflow.org/api_docs/python/tf/nn/max_pool

11 Graham, Benjamin. “Fractional Max-Pooling.” arXiv Preprint arXiv:1412.6071 (2014).

It’s important to note that only two major variations of the pooling layer are used. The
first is the nonoverlapping pooling layer with e = 2, s = 2. The second is the overlap‐
ping pooling layer with e = 3, s = 2. The resulting dimensions of each feature map are
as follows:

• Its width wout =
win − e

s + 1

• Its height hout =
hin − e

s + 1

One interesting property of max pooling is that it is locally invariant. This means that
even if the inputs shift around a little bit, the output of the max pooling layer stays
constant. This has important implications for visual algorithms. Local invariance is a
very useful property if we care more about whether some feature is present than
exactly where it is. However, enforcing large amounts of local invariance can destroy
our network’s ability to carry important information. As a result, we usually keep the
spatial extent of our pooling layers quite small.

Some recent work along this line has come out of the University of Warwick from
Graham11, who proposes a concept called fractional max pooling. In fractional max
pooling, a pseudorandom number generator is used to generate tilings with nonin‐
teger lengths for pooling. Here, fractional max pooling functions as a strong regular‐
izer, helping prevent overfitting in convolutional networks.

Full Architectural Description of Convolution Networks
Now that we’ve described the building blocks of convolutional networks, we start
putting them together. Figure 5-14 depicts several architectures that might be of prac‐
tical use.

Full Architectural Description of Convolution Networks | 99

Figure 5-14. Various convolutional network architectures of various complexities. The
architecture of VGGNet, a deep convolutional network built for ImageNet, is shown in
the rightmost network.

One theme we notice as we build deeper networks is that we reduce the number of
pooling layers and instead stack multiple convolutional layers in tandem. This is gen‐
erally helpful because pooling operations are inherently destructive. Stacking several
convolutional layers before each pooling layer allows us to achieve richer representa‐
tions.

As a practical note, deep convolutional networks can take up a significant amount of
space, and most casual practitioners are usually bottlenecked by the memory capacity
on their GPU. The VGGNet architecture, for example, takes approximately 90 MB of
memory on the forward pass per image and more than 180 MB of memory on the

100 | Chapter 5: Convolutional Neural Networks

12 Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Rec‐
ognition.” arXiv Preprint arXiv:1409.1556 (2014).

backward pass to update the parameters.12 Many deep networks make a compromise
by using strides and spatial extents in the first convolutional layer that reduce the
amount of information that needs to propagated up the network.

Closing the Loop on MNIST with Convolutional Networks
Now that we have a better understanding of how to build networks that effectively
analyze images, we’ll revisit the MNIST challenge we’ve tackled over the past several
chapters. Here, we’ll use a convolutional network to learn how to recognize handwrit‐
ten digits. Our feed-forward network was able to achieve a 98.2% accuracy. Our goal
will be to push the envelope on this result.

To tackle this challenge, we’ll build a convolutional network with a pretty standard
architecture (modeled after the second network in Figure 5-14): two pooling and two
convolutional interleaved, followed by a fully connected layer (with dropout,
p = 0 . 5) and a terminal softmax. To make building the network easy, we write a cou‐
ple of helper methods in addition to our layer generator from the feed-forward net‐
work:

def conv2d(input, weight_shape, bias_shape):
 in = weight_shape[0] * weight_shape[1] * weight_shape[2]
 weight_init = tf.random_normal_initializer(stddev=
 (2.0/in)**0.5)
 W = tf.get_variable("W", weight_shape,
 initializer=weight_init)
 bias_init = tf.constant_initializer(value=0)
 b = tf.get_variable("b", bias_shape, initializer=bias_init)
 conv_out = tf.nn.conv2d(input, W, strides=[1, 1, 1, 1],
 padding='SAME')
 return tf.nn.relu(tf.nn.bias_add(conv_out, b))

def max_pool(input, k=2):
 return tf.nn.max_pool(input, ksize=[1, k, k, 1],
 strides=[1, k, k, 1], padding='SAME')

The first helper method generates a convolutional layer with a particular shape. We
set the stride to be to be 1 and the padding to keep the width and height constant
between input and output tensors. We also initialize the weights using the same heu‐
ristic we used in the feed-forward network. In this case, however, the number of
incoming weights into a neuron spans the filter’s height and width and the input ten‐
sor’s depth.

Closing the Loop on MNIST with Convolutional Networks | 101

The second helper method generates a max pooling layer with non-overlapping win‐
dows of size k. The default, as recommended, is k=2, and we’ll use this default in our
MNIST convolutional network.

With these helper methods, we can now build a new inference constructor:

def inference(x, keep_prob):

 x = tf.reshape(x, shape=[-1, 28, 28, 1])
 with tf.variable_scope("conv_1"):
 conv_1 = conv2d(x, [5, 5, 1, 32], [32])
 pool_1 = max_pool(conv_1)

 with tf.variable_scope("conv_2"):
 conv_2 = conv2d(pool_1, [5, 5, 32, 64], [64])
 pool_2 = max_pool(conv_2)

 with tf.variable_scope("fc"):
 pool_2_flat = tf.reshape(pool_2, [-1, 7 * 7 * 64])
 fc_1 = layer(pool_2_flat, [7*7*64, 1024], [1024])

 # apply dropout
 fc_1_drop = tf.nn.dropout(fc_1, keep_prob)

 with tf.variable_scope("output"):
 output = layer(fc_1_drop, [1024, 10], [10])

 return output

The code here is quite easy to follow. We first take the flattened versions of the input
pixel values and reshape them into a tensor of the N × 28 × 28 × 1, where N is the
number of examples in a minibatch, 28 is the width and height of each image, and 1 is
the depth (because the images are black and white; if the images were in RGB color,
the depth would instead be 3 to represent each color map). We then build a convolu‐
tional layer with 32 filters that have spatial extent 5. This results in taking an input
volume of depth 1 and emitting a output tensor of depth 32. This is then passed
through a max pooling layer which compresses the information. We then build a sec‐
ond convolutional layer with 64 filters, again with spatial extent 5, taking an input
tensor of depth 32 and emitting an output tensor of depth 64. This, again, is passed
through a max pooling layer to compress information.

We then prepare to pass the output of the max pooling layer into a fully connected
layer. To do this, we flatten the tensor. We can do this by computing the full size of
each “subtensor” in the minibatch. We have 64 filters, which corresponds to the depth
of 64. We now have to determine the height and width after passing through two max
pooling layers. Using the formulas we found in the previous section, it’s easy to con‐
firm that each feature map has a height and width of 7. Confirming this is left as an
exercise for the reader.

102 | Chapter 5: Convolutional Neural Networks

After the reshaping operation, we use a fully connected layer to compress the flat‐
tened representation into a hidden state of size 1,024. We use a dropout probability in
this layer of 0.5 during training and 1 during model evaluation (standard procedure
for employing dropout). Finally, we send this hidden state into a softmax output layer
with 10 bins (the softmax is, as usual, performed in the loss constructor for better
performance).

Finally, we train our network using the Adam optimizer. After several epochs over the
dataset, we achieve an accuracy of 99.4%, which isn’t state of the art (approximately
99.7 to 99.8%), but is very respectable.

Image Preprocessing Pipelines Enable More Robust
Models
So far we’ve been dealing with rather tame datasets. Why is MNIST a tame dataset?
Well, fundamentally, MNIST has already been preprocessed so that all the images in
the dataset resemble each other. The handwritten digits are perfectly cropped in just
the same way; there are no color aberrations because MNIST is black and white; and
so on. Natural images, however, are an entirely different beast.

Natural images are messy, and as a result, there are a number of preprocessing opera‐
tions that we can utilize in order to make training slightly easier. The first technique
that is supported out of the box in TensorFlow is approximate per-image whitening.
The basic idea behind whitening is to zero-center every pixel in an image by subtract‐
ing out the mean and normalizing to unit 1 variance. This helps us correct for poten‐
tial differences in dynamic range between images. In TensorFlow, we can achieve this
using:

tf.image.per_image_whitening(image)

We also can expand our dataset artificially by randomly cropping the image, flipping
the image, modifying saturation, modifying brightness, etc:

tf.random_crop(value, size, seed=None, name=None)
tf.image.random_flip_up_down(image, seed=None)
tf.image.random_flip_left_right(image, seed=None)
tf.image.transpose_image(image)
tf.image.random_brightness(image, max_delta, seed=None)
tf.image.random_contrast(image, lower, upper, seed=None)
tf.image.random_saturation(image, lower, upper, seed=None)
tf.image.random_hue(image, max_delta, seed=None)

Applying these transformations helps us build networks that are robust to the differ‐
ent kinds of variations that are present in natural images, and make predictions with
high fidelity in spite of potential distortions.

Image Preprocessing Pipelines Enable More Robust Models | 103

13 S. Ioffe, C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covari‐
ate Shift.” arXiv Preprint arXiv:1502.03167. 2015.

Accelerating Training with Batch Normalization
In 2015, researchers from Google devised an exciting way to even further accelerate
the training of feed-forward and convolutional neural networks using a technique
called batch normalization.13 We can think of the intuition behind batch normaliza‐
tion like a tower of blocks, as shown in Figure 5-15.

Figure 5-15. When blocks in a tower become shifted too drastically so that they no longer
align, the structure can become very unstable

When a tower of blocks is stacked together neatly, the structure is stable. However, if
we randomly shift the blocks, we could force the tower into configurations that are
increasingly unstable. Eventually the tower falls apart.

A similar phenomenon can happen during the training of neural networks. Imagine a
two-layer neural network. In the process of training the weights of the network, the
output distribution of the neurons in the bottom layer begins to shift. The result of
the changing distribution of outputs from the bottom layer means that the top layer
not only has to learn how to make the appropriate predictions, but it also needs to
somehow modify itself to accommodate the shifts in incoming distribution. This sig‐
nificantly slows down training, and the magnitude of the problem compounds the
more layers we have in our networks.

104 | Chapter 5: Convolutional Neural Networks

Normalization of image inputs helps out the training process by making it more
robust to variations. Batch normalization takes this a step further by normalizing
inputs to every layer in our neural network. Specifically, we modify the architecture
of our network to include operations that:

1. Grab the vector of logits incoming to a layer before they pass through the nonli‐
nearity

2. Normalize each component of the vector of logits across all examples of the mini‐
batch by subtracting the mean and dividing by the standard deviation (we keep
track of the moments using an exponentially weighted moving average)

3. Given normalized inputs x̂, use an affine transform to restore representational
power with two vectors of (trainable) parameters: γx̂ + β

Expressed in TensorFlow, batch normalization can be expressed as follows for a con‐
volutional layer:

def conv_batch_norm(x, n_out, phase_train):
 beta_init = tf.constant_initializer(value=0.0,
 dtype=tf.float32)
 gamma_init = tf.constant_initializer(value=1.0,
 dtype=tf.float32)

 beta = tf.get_variable("beta", [n_out],
 initializer=beta_init)
 gamma = tf.get_variable("gamma", [n_out],
 initializer=gamma_init)

 batch_mean, batch_var = tf.nn.moments(x, [0,1,2],
 name='moments')
 ema = tf.train.ExponentialMovingAverage(decay=0.9)
 ema_apply_op = ema.apply([batch_mean, batch_var])
 ema_mean, ema_var = ema.average(batch_mean),
 ema.average(batch_var)
 def mean_var_with_update():
 with tf.control_dependencies([ema_apply_op]):
 return tf.identity(batch_mean),
 tf.identity(batch_var)
 mean, var = control_flow_ops.cond(phase_train,
 mean_var_with_update,
 lambda: (ema_mean, ema_var))

 normed = tf.nn.batch_norm_with_global_normalization(x,
 mean, var, beta, gamma, 1e-3, True)
 return normed

We can also express batch normalization for nonconvolutional feedforward layers,
with a slight modification to how the moments are calculated, and a reshaping option
for compatibility with tf.nn.batch_norm_with_global_normalization:

Accelerating Training with Batch Normalization | 105

def layer_batch_norm(x, n_out, phase_train):
 beta_init = tf.constant_initializer(value=0.0,
 dtype=tf.float32)
 gamma_init = tf.constant_initializer(value=1.0,
 dtype=tf.float32)

 beta = tf.get_variable("beta", [n_out],
 initializer=beta_init)
 gamma = tf.get_variable("gamma", [n_out],
 initializer=gamma_init)

 batch_mean, batch_var = tf.nn.moments(x, [0],
 name='moments')
 ema = tf.train.ExponentialMovingAverage(decay=0.9)
 ema_apply_op = ema.apply([batch_mean, batch_var])
 ema_mean, ema_var = ema.average(batch_mean),
 ema.average(batch_var)
 def mean_var_with_update():
 with tf.control_dependencies([ema_apply_op]):
 return tf.identity(batch_mean),
 tf.identity(batch_var)
 mean, var = control_flow_ops.cond(phase_train,
 mean_var_with_update,
 lambda: (ema_mean, ema_var))

 x_r = tf.reshape(x, [-1, 1, 1, n_out])
 normed = tf.nn.batch_norm_with_global_normalization(x_r,
 mean, var, beta, gamma, 1e-3, True)
 return tf.reshape(normed, [-1, n_out])

In addition to speeding up training by preventing significant shifts in the distribution
of inputs to each layer, batch normalization also allows us to significantly increase the
learning rate. Moreover, batch normalization acts as a regularizer and removes the
need for dropout and (when used) L2 regularization. Although we don’t leverage it
here, the authors also claim that batch regularization largely removes the need for
photometric distortions, and we can expose the network to more “real” images dur‐
ing the training process.

Now that we’ve developed an enhanced toolkit for analyzing natural images with con‐
volutional networks, we’ll now build a classifier for tackling the CIFAR-10 challenge.

106 | Chapter 5: Convolutional Neural Networks

14 Krizhevsky, Alex, and Geoffrey Hinton. “Learning Multiple Layers of Features from Tiny Images.” (2009).

Building a Convolutional Network for CIFAR-10
The CIFAR-10 challenge consists of 32 x 32 color images that belong to one of 10
possible classes.14 This is a surprisingly hard challenge because it can be difficult for
even a human to figure out what is in a picture. An example is shown in Figure 5-16.

Figure 5-16. A dog from the CIFAR-100 dataset

In this section, we’ll build networks both with and without batch normalization as a
basis of comparison. We increase the learning rate by 10-fold for the batch normaliza‐
tion network to take full advantage of its benefits. We’ll only display code for the
batch normalization network here because building the vanilla convolutional network
is very similar.

We distort random 24 × 24 crops of the input images to feed into our network for
training. We use the example code provided by Google to do this. We’ll jump right

Building a Convolutional Network for CIFAR-10 | 107

into the network architecture. To start, let’s take a look at how we integrate batch nor‐
malization into the convolutional and fully connected layers. As expected, batch nor‐
malization happens to the logits before they’re fed into a nonlinearity:

def conv2d(input, weight_shape, bias_shape, phase_train,
 visualize=False):
 incoming = weight_shape[0] * weight_shape[1]
 * weight_shape[2]
 weight_init = tf.random_normal_initializer(stddev=
 (2.0/incoming)**0.5)
 W = tf.get_variable("W", weight_shape,
 initializer=weight_init)
 if visualize:
 filter_summary(W, weight_shape)
 bias_init = tf.constant_initializer(value=0)
 b = tf.get_variable("b", bias_shape, initializer=bias_init)
 logits = tf.nn.bias_add(tf.nn.conv2d(input, W,
 strides=[1, 1, 1, 1], padding='SAME'), b)
 return tf.nn.relu(conv_batch_norm(logits, weight_shape[3],
 phase_train))

def layer(input, weight_shape, bias_shape, phase_train):
 weight_init = tf.random_normal_initializer(stddev=
 (2.0/weight_shape[0])**0.5)
 bias_init = tf.constant_initializer(value=0)
 W = tf.get_variable("W", weight_shape,
 initializer=weight_init)
 b = tf.get_variable("b", bias_shape,
 initializer=bias_init)
 logits = tf.matmul(input, W) + b
 return tf.nn.relu(layer_batch_norm(logits, weight_shape[1],
 phase_train))

The rest of the architecture is straightforward. We use two convolutional layers (each
followed by a max pooling layer). There are then two fully connected layers followed
by a softmax. Dropout is included for reference, but in the batch normalization ver‐
sion, keep_prob=1 during training:

def inference(x, keep_prob, phase_train):

 with tf.variable_scope("conv_1"):
 conv_1 = conv2d(x, [5, 5, 3, 64], [64], phase_train,
 visualize=True)
 pool_1 = max_pool(conv_1)

 with tf.variable_scope("conv_2"):
 conv_2 = conv2d(pool_1, [5, 5, 64, 64], [64],
 phase_train)
 pool_2 = max_pool(conv_2)

 with tf.variable_scope("fc_1"):

108 | Chapter 5: Convolutional Neural Networks

 dim = 1
 for d in pool_2.get_shape()[1:].as_list():
 dim *= d

 pool_2_flat = tf.reshape(pool_2, [-1, dim])
 fc_1 = layer(pool_2_flat, [dim, 384], [384],
 phase_train)

 # apply dropout
 fc_1_drop = tf.nn.dropout(fc_1, keep_prob)

 with tf.variable_scope("fc_2"):

 fc_2 = layer(fc_1_drop, [384, 192], [192], phase_train)

 # apply dropout
 fc_2_drop = tf.nn.dropout(fc_2, keep_prob)

 with tf.variable_scope("output"):
 output = layer(fc_2_drop, [192, 10], [10], phase_train)

 return output

Finally, we use the Adam optimizer to train our convolutional networks. After some
amount of time training, our networks are able to achieve an impressive 92.3% accu‐
racy on the CIFAR-10 task without batch normalization and 96.7% accuracy with
batch normalization. This result actually matches (and potentially exceeds) current
state-of-the-art research on this task! In the next section, we’ll take a closer look at
learning and visualize how our networks perform.

Visualizing Learning in Convolutional Networks
On a high level, the simplest thing that we can do to visualize training is plot the cost
function and validation errors over time as training progresses. We can clearly
demonstrate the benefits of batch normalization by comparing the rates of conver‐
gence between our two networks. Plots taken in the middle of the training process are
shown in Figure 5-17.

Visualizing Learning in Convolutional Networks | 109

Figure 5-17. Training a convolutional network without batch normalization (left) versus
with batch normalization (right). Batch normalization vastly accelerates the training
process.

Without batch normalization, cracking the 90% accuracy threshold requires over
80,000 minibatches. On the other hand, with batch normalization, crossing the same
threshold only requires slightly over 14,000 minibatches.

We can also inspect the filters that our convolutional network learns in order to
understand what the network finds important to its classification decisions. Convolu‐
tional layers learn hierarchical representations, and so we’d hope that the first convo‐
lutional layer learns basic features (edges, simple curves, etc.), and the second
convolutional layer will learn more complex features. Unfortunately, the second con‐
volutional layer is difficult to interpret even if we decided to visualize it, so we only
include the first layer filters in Figure 5-18.

110 | Chapter 5: Convolutional Neural Networks

15 Maaten, Laurens van der, and Geoffrey Hinton. “Visualizing Data using t-SNE.” Journal of Machine Learning
Research 9.Nov (2008): 2579-2605.

Figure 5-18. A subset of the learned filters in the first convolutional layer of our network

We can make out a number of interesting features in our filters: vertical, horizontal,
and diagonal edges, in addition to small dots or splotches of one color surrounded by
another. We can be confident that our network is learning relevant features because
the filters are not just noise.

We can also try to visualize how our network has learned to cluster various kinds of
images pictorially. To illustrate this, we take a large network that has been trained on
the ImageNet challenge and then grab the hidden state of the fully connected layer
just before the softmax for each image. We then take this high-dimensional represen‐
tation for each image and use an algorithm known as t-Distributed Stochastic Neigh‐
bor Embedding, or t-SNE, to compress it to a two-dimensional representation that we
can visualize.15 We don’t cover the details of t-SNE here, but there are a number of

Visualizing Learning in Convolutional Networks | 111

16 http://cs.stanford.edu/people/karpathy/cnnembed/

publicly available software tools that will do it for us, including the script. We visual‐
ize the embeddings in Figure 5-19, and the results are quite spectacular.

Figure 5-19. The t-SNE embedding (center) surrounded by zoomed-in subsegments of
the embedding (periphery). Image credit: Andrej Karpathy.16

At first, on a high level, it seems that images that are similarly colored are closer
together. This is interesting, but what’s even more striking is when we zoom into parts
of the visualization, we realize that it’s more than just color. We realize that all pic‐
tures of boats are in one place, all pictures of humans are in another place, and all
pictures of butterflies are in yet another location in the visualization. Quite clearly,
convolutional networks have spectacular learning capabilities.

112 | Chapter 5: Convolutional Neural Networks

http://cs.stanford.edu/people/karpathy/cnnembed/
https://lvdmaaten.github.io/tsne/code/tsne_python.zip

17 Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. “A Neural Algorithm of Artistic Style.” arXiv Pre‐
print arXiv:1508.06576 (2015).

Leveraging Convolutional Filters to Replicate Artistic
Styles
Over the past couple of years, we’ve also developed algorithms that leverage convolu‐
tional networks in much more creative ways. One of these algorithms is called neural
style.17 The goal of neural style is to be able to take an arbitrary photograph and re-
render it as if it were painted in the style of a famous artist. This seems like a daunting
task, and it’s not exactly clear how we might approach this problem if we didn’t have a
convolutional network. However, it turns out that clever manipulation of convolu‐
tional filters can produce spectacular results on this problem.

Let’s take a pre-trained convolutional network. There are three images that we’re deal‐
ing with. The first two are the source of content p and the source of style a. The third
image is the generated image x. Our goal will be to derive an error function that we
can backpropagate that, when minimized, will perfectly combine the content of the
desired photograph and the style of the desired artwork.

We start with content first. If a layer in the network has kl filters, then it produces a
total of kl feature maps. Let’s call the size of each feature map ml, the height times the
width of the feature map. This means that the activations in all the feature maps of
this layer can be stored in a matrix F(l) of size kl × ml. We can also represent all the
activations of the photograph in a matrix P(l) and all the activations of the generated
image in the matrix X(l). We use the relu4_2 of the original VGGNet:

 Econtent(p, x) = ∑ij(Pij
(l) - Xij

(l))2

Now we can try tackling style. To do this we construct a matrix known as the Gram
matrix, which represents correlations between feature maps in a given layer. The cor‐
relations represent the texture and feel that is common among all features, irrespec‐
tive of which features we’re looking at. Constructing the Gram matrix, which is of size
kl × kl, for a given image is done as follows:

 G(l)
ij = ∑c = 0

ml F(l)
ic F(l)

jc

We can compute the Gram matrices for both the artwork in matrix A(l) and the gener‐
ated image in G(l). We can then represent the error function as:

 Estyle �, � = 1

4kl
2ml

2 ∑l = 1
L ∑i j

1
L Ai j

l − Gi j
l 2

Here, we weight each squared difference equally (dividing by the number of layers we
want to include in our style reconstruction). Specifically, we use the relu1_1,

Leveraging Convolutional Filters to Replicate Artistic Styles | 113

18 Karpathy, Andrej, et al. “Large-scale Video Classification with Convolutional Neural Networks.” Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2014.

relu2_1, relu3_1, relu4_1, and relu5_1 layers of the original VGGNet. We omit full
a discussion of the TensorFlow code (http://bit.ly/2qAODnp) for brevity, but the
results, as shown in Figure 5-20, are again quite spectacular. We mix a photograph of
the iconic MIT dome and Leonid Afremov’s Rain Princess.

Figure 5-20. The result of mixing the Rain Princess with a photograph of the MIT Dome.
Image credit: Anish Athalye.

Learning Convolutional Filters for Other Problem Domains
Although our examples in this chapter focus on image recognition, there are several
other problem domains in which convolutional networks are useful. A natural exten‐
sion of image analysis is video analysis. In fact, using five-dimensional tensors
(including time as a dimension) and applying three-dimensional convolutions is an
easy way to extend the convolutional paradigm to video.18 Convolutional filters have

114 | Chapter 5: Convolutional Neural Networks

http://bit.ly/2qAODnp

19 Abdel-Hamid, Ossama, et al. “Applying Convolutional Neural Networks concepts to hybrid NN-HMM model
for speech recognition.” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Kyoto, 2012, pp. 4277-4280.

also been successfully used to analyze audiograms.19 In these applications, a convolu‐
tional network slides over an audiogram input to predict phonemes on the other side.

Less intuitively, convolutional networks have also found some use in natural language
processing. We’ll see some examples of this in later chapters. More exotic uses of con‐
volutional networks include teach algorithms to play board games, and analyzing
biological molecules for drug discovery. We’ll also discuss both of these examples in
later chapters of this book.

Summary
In this chapter, we learned how to build neural networks that analyze images. We
developed the concept of a convolution, and leveraged this idea to create tractable
networks that can analyze both simple and more complex natural images. We built
several of these convolutional networks in TensorFlow, and leveraged various image
processing pipelines and batch normalization to make training our networks faster
and more robust. Finally, we visualized the learning of convolutional networks and
explored other interesting applications of the technology.

Images were easy to analyze because we were able to come up with effective ways to
represent them as tensors. In other situations (e.g., natural language), it’s less clear
how one might represent our input data as tensors. To tackle this problem as a step‐
ping stone to new deep learning models, we’ll develop some key concepts in vector
embeddings and representation learning in the next chapter.

Summary | 115

CHAPTER 6

Embedding and Representation Learning

Learning Lower-Dimensional Representations
In the previous chapter, we motivated the convolutional architecture using a simple
argument. The larger our input vector, the larger our model. Large models with lots
of parameters are expressive, but they’re also increasingly data hungry. This means
that without sufficiently large volumes of training data, we will likely overfit. Convo‐
lutional architectures help us cope with the curse of dimensionality by reducing the
number of parameters in our models without necessarily diminishing expressiveness.

Regardless, convolutional networks still require large amounts of labeled training
data. And for many problems, labeled data is scarce and expensive to generate. Our
goal in this chapter will be to develop effective learning models in situations where
labeled data is scarce but wild, unlabeled data is plentiful. We’ll approach this prob‐
lem by learning embeddings, or low-dimensional representations, in an unsupervised
fashion. Because these unsupervised models allow us to offload all of the heavy lifting
of automated feature selection, we can use the generated embeddings to solve learn‐
ing problems using smaller models that require less data. This process is summarized
in Figure 6-1.

117

Figure 6-1. Using embeddings to automate feature selection in the face of scarce labeled
data

In the process of developing algorithms that learn good embeddings, we’ll also
explore other applications of learning lower-dimensional representations, such as vis‐
ualization and semantic hashing. We’ll start by considering situations where all of the
important information is already contained within the original input vector itself. In
this case, learning embeddings is equivalent to developing an effective compression
algorithm.

In the next section, we’ll introduce principal component analysis (PCA), a classic
method for dimensionality reduction. In subsequent sections, we’ll explore more
powerful neural methods for learning compressive embeddings.

Principal Component Analysis
The basic concept behind PCA is that we’d like to find a set of axes that communi‐
cates the most information about our dataset. More specifically, if we have d-
dimensional data, we’d like to find a new set of m < d dimensions that conserves as
much valuable information from the original dataset. For simplicity, let’s
choose d = 2, m = 1. Assuming that variance corresponds to information, we can per‐
form this transformation through an iterative process. First we find a unit vector
along which the dataset has maximum variance. Because this direction contains the
most information, we select this direction as our first axis. Then from the set of vec‐
tors orthogonal to this first choice, we pick a new unit vector along which the dataset
has maximum variance. This is our second axis. We continue this process until we
have found a total of d new vectors that represent new axes. We project our data onto
this new set of axes. We then decide a good value for m and toss out all but the

118 | Chapter 6: Embedding and Representation Learning

first m axes (the principal components, which store the most information). The result
is shown in Figure 6-2.

Figure 6-2. An illustration of PCA for dimensionality reduction to capture the dimen‐
sion with the most information (as proxied by variance)

For the mathematically initiated, we can view this operation as a project onto the vec‐
tor space spanned by the top m eigenvectors of the dataset’s covariance matrix (within
constant scaling). Let us represent the dataset as a matrix X with dimensions n × d
(i.e., n inputs of d dimensions). We’d like to create an embedding matrix T with
dimensions n × m. We can compute the matrix using the relationship T = X, where
each column of W corresponds to an eigenvector of the matrix XΤX.

While PCA has been used for decades for dimensionality reduction, it spectacularly
fails to capture important relationships that are piecewise linear or nonlinear. Take,
for instance, the example illustrated in Figure 6-3.

Principal Component Analysis | 119

Figure 6-3. A situation in which PCA fails to optimally transform the data for dimen‐
sionality reduction

The example shows data points selected at random from two concentric circles. We
hope that PCA will transform this dataset so that we can pick a single new axis that
allows us to easily separate the red and blue dots. Unfortunately for us, there is no
linear direction that contains more information here than another (we have equal
variance in all directions). Instead, as a human being, we notice that information is
being encoded in a nonlinear way, in terms of how far points are from the origin.
With this information in mind, we notice that the polar transformation (expressing
points as their distance from the origin, as the new horizontal axis, and their angle
bearing from the original x-axis, as the new vertical axis) does just the trick.

Figure 6-3 highlights the shortcomings of an approach like PCA in capturing impor‐
tant relationships in complex datasets. Because most of the datasets we are likely to
encounter in the wild (images, text, etc.) are characterized by nonlinear relationships,
we must develop a theory that will perform nonlinear dimensionality reduction.
Deep learning practitioners have closed this gap using neural models, which we’ll
cover in the next section.

Motivating the Autoencoder Architecture
When we talked about feed-forward networks, we discussed how each layer learned
progressively more relevant representations of the input. In fact, in Chapter 5, we
took the output of the final convolutional layer and used that as a lower-dimensional

120 | Chapter 6: Embedding and Representation Learning

1 Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the Dimensionality of Data with Neural Net‐
works.” Science 313.5786 (2006): 504-507.

representation of the input image. Putting aside the fact that we want to generate
these low-dimensional representations in an unsupervised fashion, there are funda‐
mental problems with these approaches in general. Specifically, while the selected
layer does contain information from the input, the network has been trained to pay
attention to the aspects of the input that are critical to solving the task at hand. As a
result, there’s a significant amount of information loss with respect to elements of the
input that may be important for other classification tasks, but potentially less impor‐
tant than the one immediately at hand.

However, the fundamental intuition here still applies. We define a new network archi‐
tecture that we call the autoencoder. We first take the input and compress it into a
low-dimensional vector. This part of the network is called the encoder because it is
responsible for producing the low-dimensional embedding or code. The second part
of the network, instead of mapping the embedding to an arbitrary label as we would
in a feed-forward network, tries to invert the computation of the first half of the net‐
work and reconstruct the original input. This piece is known as the decoder. The
overall architecture is illustrated in Figure 6-4.

Figure 6-4. The autoencoder architecture attempts to construct a high-dimensional input
into a low-dimensional embedding and then uses that low-dimensional embedding to
reconstruct the input

To demonstrate the surprising effectiveness of autoencoders, we’ll build and visualize
the autoencoder architecture in Figure 6-5. Specifically, we will highlight its superior
ability to separate MNIST digits as compared to PCA.

Implementing an Autoencoder in TensorFlow
The seminal paper “Reducing the dimensionality of data with neural networks,”
which describes the autoencoder, was written by Hinton and Salakhutdinov in 2006.1

Their hypothesis was that the nonlinear complexities afforded by a neural model
would allow them to capture structure that linear methods, such as PCA, would miss.
 To demonstrate this point, they ran an experiment on MNIST using both an autoen‐
coder and PCA to reduce the dataset into two-dimensional data points. In this sec‐

Implementing an Autoencoder in TensorFlow | 121

tion, we will recreate their experimental setup to validate this hypothesis and further
explore the architecture and properties of feed-forward autoencoders.

Figure 6-5. The experimental setup for dimensionality reduction of the MNIST dataset
employed by Hinton and Salakhutdinov, 2006

The setup shown in Figure 6-5 is built with the same principle, but the two-
dimensional embedding is now treated as the input, and the network attempts to
reconstruct the original image. Because we are essentially applying an inverse opera‐
tion, we architect the decoder network so that the autoencoder has the shape of an
hourglass. The output of the decoder network is a 784-dimensional vector that can
be reconstructed into a 28 × 28 image:

def decoder(code, n_code, phase_train):
 with tf.variable_scope("decoder"):
 with tf.variable_scope("hidden_1"):
 hidden_1 = layer(code, [n_code, n_decoder_hidden_1],
 [n_decoder_hidden_1], phase_train)

 with tf.variable_scope("hidden_2"):
 hidden_2 = layer(hidden_1, [n_decoder_hidden_1,

122 | Chapter 6: Embedding and Representation Learning

 n_decoder_hidden_2], [n_decoder_hidden_2],
 phase_train)

 with tf.variable_scope("hidden_3"):
 hidden_3 = layer(hidden_2, [n_decoder_hidden_2,
 n_decoder_hidden_3], [n_decoder_hidden_3],
 phase_train)

 with tf.variable_scope("output"):
 output = layer(hidden_3, [n_decoder_hidden_3, 784],
 [784], phase_train)

 return output

As a quick note, in order to accelerate training, we’ll reuse the batch normalization
strategy we employed in Chapter 5. Also, because we’d like to visualize the results,
we’ll avoid introducing sharp transitions in our neurons. In this example, we’ll use
sigmoidal neurons instead of our usual ReLU neurons:

def layer(input, weight_shape, bias_shape, phase_train):
 weight_init = tf.random_normal_initializer(stddev=
 (1.0/weight_shape[0])**0.5)
 bias_init = tf.constant_initializer(value=0)
 W = tf.get_variable("W", weight_shape,
 initializer=weight_init)
 b = tf.get_variable("b", bias_shape,
 initializer=bias_init)
 logits = tf.matmul(input, W) + b
 return tf.nn.sigmoid(layer_batch_norm(logits,
 weight_shape[1],
 phase_train))

Finally, we need to construct a measure (or objective function) that describes how
well our model functions. Specifically, we want to measure how close the reconstruc‐
tion is to the original image. We can measure this simply by computing the distance
between the original 784-dimensional input and the reconstructed 784-dimensional
output. More specifically, given an input vector I and a reconstruction O, we’d like to
minimize the value of ∥ I − O ∥ = ∑i Ii − Oi

2, also known as the L2 norm of the
difference between the two vectors. We average this function over the whole mini‐
batch to generate our final objective function. Finally, we’ll train the network using
the Adam optimizer, logging a scalar summary of the error incurred at every mini‐
batch using tf.scalar_summary. In TensorFlow, we can concisely express the loss
and training operations as follows:

Implementing an Autoencoder in TensorFlow | 123

def loss(output, x):
 with tf.variable_scope("training"):
 l2 = tf.sqrt(tf.reduce_sum(tf.square(tf.sub(output, x)),
 1))
 train_loss = tf.reduce_mean(l2)
 train_summary_op = tf.scalar_summary("train_cost",
 train_loss)
 return train_loss, train_summary_op

def training(cost, global_step):
 optimizer = tf.train.AdamOptimizer(learning_rate=0.001,
 beta1=0.9, beta2=0.999, epsilon=1e-08,
 use_locking=False, name='Adam')
 train_op = optimizer.minimize(cost, global_step=global_step)
 return train_op

Finally, we’ll need a method to evaluate the generalizability of our model. As usual,
we’ll use a validation dataset and compute the same L2 norm measurement for model
evaluation. In addition, we’ll collect image summaries so that we can compare both
the input images and the reconstructions:

def image_summary(summary_label, tensor):
 tensor_reshaped = tf.reshape(tensor, [-1, 28, 28, 1])
 return tf.image_summary(summary_label, tensor_reshaped)

def evaluate(output, x):
 with tf.variable_scope("validation"):
 in_im_op = image_summary("input_image", x)
 out_im_op = image_summary("output_image", output)
 l2 = tf.sqrt(tf.reduce_sum(tf.square(tf.sub(output, x,
 name="val_diff")), 1))
 val_loss = tf.reduce_mean(l2)
 val_summary_op = tf.scalar_summary("val_cost", val_loss)
 return val_loss, in_im_op, out_im_op, val_summary_op

Finally, all that’s left to do is build the model out of these subcomponents and train
the model. A lot of this code is familiar, but it has a couple of additional bells and
whistles that are worth covering. First, we have modified our usual code to accept a
command-line parameter for determining the number of neurons in our code layer.
For example, running $ python autoencoder_mnist.py 2 will instantiate a model
with two neurons in the code layer. We also reconfigure the model saver to maintain
more snapshots of our model. We’ll be reloading our most effective model later to
compare its performance to PCA, so we’d like to be able to have access to many snap‐
shots. We use summary writers to also capture the image summaries we generate at
the end of each epoch:

124 | Chapter 6: Embedding and Representation Learning

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description='Test various
 optimization strategies')
 parser.add_argument('n_code', nargs=1, type=str)
 args = parser.parse_args()
 n_code = args.n_code[0]

 mnist = input_data.read_data_sets("data/", one_hot=True)

 with tf.Graph().as_default():

 with tf.variable_scope("autoencoder_model"):

 x = tf.placeholder("float", [None, 784]) # mnist
 data image of shape 28*28=784
 phase_train = tf.placeholder(tf.bool)

 code = encoder(x, int(n_code), phase_train)

 output = decoder(code, int(n_code), phase_train)

 cost, train_summary_op = loss(output, x)

 global_step = tf.Variable(0, name='global_step',
 trainable=False)

 train_op = training(cost, global_step)

 eval_op, in_im_op, out_im_op, val_summary_op =
 evaluate(output, x)

 summary_op = tf.merge_all_summaries()

 saver = tf.train.Saver(max_to_keep=200)

 sess = tf.Session()

 train_writer = tf.train.SummaryWriter(
 "mnist_autoencoder_hidden=" + n_code +
 "_logs/",graph=sess.graph)

 val_writer = tf.train.SummaryWriter(
 "mnist_autoencoder_hidden=" + n_code +
 "_logs/", graph=sess.graph)

 init_op = tf.initialize_all_variables()

 sess.run(init_op)

 # Training cycle
 for epoch in range(training_epochs):

Implementing an Autoencoder in TensorFlow | 125

 avg_cost = 0.
 total_batch = int(mnist.train.num_examples/
 batch_size)
 # Loop over all batches
 for i in range(total_batch):
 mbatch_x, mbatch_y =
 mnist.train.next_batch(batch_size)
 # Fit training using batch data
 _, new_cost, train_summary = sess.run([
 train_op, cost,
 train_summary_op],
 feed_dict={x: mbatch_x,
 phase_train: True})
 train_writer.add_summary(train_summary,
 sess.run(global_step))
 # Compute average loss
 avg_cost += new_cost/total_batch
 # Display logs per epoch step
 if epoch % display_step == 0:
 print "Epoch:", '%04d' % (epoch+1),
 "cost =", "{:.9f}".format(avg_cost)

 train_writer.add_summary(train_summary,
 sess.run(global_step))
 val_images = mnist.validation.images
 validation_loss, in_im, out_im,
 val_summary = sess.run([eval_op, in_im_op,
 out_im_op, val_summary_op],
 feed_dict={x: val_images,
 phase_train: False})
 val_writer.add_summary(in_im, sess.run
 (global_step))
 val_writer.add_summary(out_im, sess.run
 (global_step))
 val_writer.add_summary(val_summary, sess.run
 (global_step))
 print "Validation Loss:", validation_loss

 saver.save(sess,
 "mnist_autoencoder_hidden=" + n_code +
 "_logs/model-checkpoint-"
 + '%04d' % (epoch+1),
 global_step=global_step)

 print "Optimization Finished!"

 test_loss = sess.run(eval_op, feed_dict={x:
 mnist.test.images, phase_train: False})

126 | Chapter 6: Embedding and Representation Learning

 print "Test Loss:", loss

We can visualize the TensorFlow graph, the training and validation costs, and the
image summaries using TensorBoard. Simply run the following command:

$ tensorboard --logdir ~/path/to/mnist_autoencoder_hidden=2_logs

Then navigate your browser to http://localhost:6006/. The results of the “Graph” tab
are shown in Figure 6-6.

Figure 6-6. TensorFlow allows us to neatly view the high-level components and data flow
of our computation graph (left) and also click through to more closely inspect the data
flows of individual subcomponents (right)

Thanks to how we’ve namespaced the components of our TensorFlow graph, our
model is nicely organized. We can easily click through the components and delve
deeper, tracing how data flows up through the various layers of the encoder and
through the decoder, how the optimizer reads the output of our training module, and
how gradients in turn affect all of the components of the model.

We also visualize both the training (after each minibatch) and validation costs (after
each epoch), closely monitoring the curves for potential overfitting. The TensorBoard
visualizations of the costs over the span of training are shown in Figure 6-7. As we
would expect for a successful model, both the training and validation curves decrease
until they flatten off asymptotically. After approximately 200 epochs, we attain a vali‐
dation cost of 4.78. While the curves look promising, it’s difficult to, upon first glance,
understand whether we’ve reached a plateau at a “good” cost, or whether our model is
still doing a poor job of reconstructing the original inputs

Implementing an Autoencoder in TensorFlow | 127

Figure 6-7. The cost incurred on the training set (logged after each minibatch) and on
the validation set (logged after each epoch)

To get a sense of what that means, let’s explore the MNIST dataset. We pick an arbi‐
trary image of a 1 from the dataset and call it X. In Figure 6-8, we compare the image
to all other images in the dataset. Specifically, for each digit class, we compute the
average of the L2 costs, comparing X to each instance of the digit class. As a visual
aide, we also include the average of all of the instances for each digit class.

128 | Chapter 6: Embedding and Representation Learning

Figure 6-8. The image of the 1 on the left is compared to all of the other digits in the
MNIST dataset; each digit class is represented visually with the average of all of its mem‐
bers and labeled with the average of the L2 costs, comparing the 1 on the left with all of
the class members

On average, X is 5.75 units away from other 1’s in MNIST. In terms of L2 distance,
the non-1 digits closest to the X are the 7’s (8.94 units) and the digits farthest are the
0’s (11.05 units). Given these measurements, it’s quite apparent that with an average
cost of 4.78, our autoencoder is producing high-quality reconstructions.

Because we are collecting image summaries, we can confirm this hypothesis directly
by inspecting the input images and reconstructions directly. The reconstructions for
three randomly chosen samples from the test set are shown in Figure 6-9.

Implementing an Autoencoder in TensorFlow | 129

Figure 6-9. A side-by-side comparison of the original inputs (from the validation set)
and reconstructions after 5, 100, and 200 epochs of training

After five epochs, we can start to make out some of the critical strokes of the original
image that are being picked by the autoencoder, but for the most part, the reconstruc‐
tions are still hazy mixtures of closely related digits. By 100 epochs, the 0 and 4 are
reconstructed with strong strokes, but it looks like the autoencoder is still having
trouble differentiating between 5’s, 3’s, and possibly 8’s. However, by 200 epochs, it’s
clear that even this more difficult ambiguity is clarified, and all of the digits are
crisply reconstructed.

Finally, we’ll complete the section by exploring the two-dimensional codes produced
by traditional PCA and autoencoders. We’ll want to show that autoencoders produce
better visualizations. In particular, we’ll want to show that autoencoders do a much
better job of visually separating instances of different digit classes than PCA. We’ll
start by quickly covering the code we use to produce two-dimensional PCA codes:

from sklearn import decomposition
import input_data

mnist = input_data.read_data_sets("data/", one_hot=False)

130 | Chapter 6: Embedding and Representation Learning

pca = decomposition.PCA(n_components=2)
pca.fit(mnist.train.images)
pca_codes = pca.transform(mnist.test.images)

We first pull up the MNIST dataset. We’ve set the flag one_hot=False because we’d
like the labels to be provided as integers instead of one-hot vectors (as a quick
reminder, a one-hot vector representing an MNIST label would be a vector of size 10
with the ith component set to one to represent digit i and the rest of the components
set to zero). We use the commonly used machine learning library scikit-learn to per‐
form the PCA, setting the n_components=2 flat so that scikit-learn knows to generate
two-dimensional codes. We can also reconstruct the original images from the two-
dimensional codes and visualize the reconstructions:

from matplotlib import pyplot as plt

pca_recon = pca.inverse_transform(pca_codes[:1])
plt.imshow(pca_recon[0].reshape((28,28)), cmap=plt.cm.gray)
plt.show()

The code snippet shows how to visualize the first image in the test dataset, but we can
easily modify the code to visualize any arbitrary subset of the dataset. Comparing the
PCA reconstructions to the autoencoder reconstructions in Figure 6-10, it’s quite
clear that the autoencoder vastly outperforms PCA with two-dimensional codes. In
fact, the PCA’s performance is somewhat reminiscent of the autoencoder only five
epochs into training. It has trouble distinguishing 5’s from 3’s and 8’s, 0’s from 8’s, and
4’s from 9’s. Repeating the same experiment with 30-dimensional codes provides sig‐
nificant improvement to the PCA reconstructions, but they are still significantly
worse than the 30-dimensional autoencoder.

Figure 6-10. Comparing the reconstructions by both PCA and autoencoder side by side

Implementing an Autoencoder in TensorFlow | 131

Now, to complete the experiment, we must load up a saved TensorFlow model,
retrieve the two-dimensional codes, and plot both the PCA and autoencoder codes.
We’re careful to rebuild the TensorFlow graph exactly how we set it up during train‐
ing. We pass the path to the model checkpoint we saved during training as a
command-line argument to the script. Finally, we use a custom plotting function to
generate a legend and appropriately color data points of different digit classes:

import tensorflow as tf
import autoencoder_mnist as ae
import argparse

def scatter(codes, labels):
 colors = [
 ('#27ae60', 'o'),
 ('#2980b9', 'o'),
 ('#8e44ad', 'o'),
 ('#f39c12', 'o'),
 ('#c0392b', 'o'),
 ('#27ae60', 'x'),
 ('#2980b9', 'x'),
 ('#8e44ad', 'x'),
 ('#c0392b', 'x'),
 ('#f39c12', 'x'),
]
 for num in xrange(10):
 plt.scatter([codes[:,0][i] for i in xrange(len
 (labels)) if labels[i] == num],
 [codes[:,1][i] for i in xrange(len(labels)) if
 labels[i] == num], 7,
 label=str(num), color = colors[num][0],
 marker=colors[num][1])
 plt.legend()
 plt.show()

with tf.Graph().as_default():

 with tf.variable_scope("autoencoder_model"):

 x = tf.placeholder("float", [None, 784])
 phase_train = tf.placeholder(tf.bool)

 code = ae.encoder(x, 2, phase_train)

 output = ae.decoder(code, 2, phase_train)

 cost, train_summary_op = ae.loss(output, x)

 global_step = tf.Variable(0, name='global_step',
 trainable=False)

132 | Chapter 6: Embedding and Representation Learning

 train_op = ae.training(cost, global_step)

 eval_op, in_im_op, out_im_op, val_summary_op =
 ae.evaluate(output, x)

 saver = tf.train.Saver()

 sess = tf.Session()

 sess = tf.Session()
 saver = tf.train.Saver()
 saver.restore(sess, args.savepath[0])

 ae_codes= sess.run(code, feed_dict={x:
 mnist.test.images, phase_train: True})

 scatter(ae_codes,
 mnist.test.labels)
 scatter(pca_codes, mnist.test.labels)

In the resulting visualization in Figure 6-11, it is extremely difficult to make out sepa‐
rable clusters in the two-dimensional PCA codes; the autoencoder has clearly done a
spectacular job at clustering codes of different digit classes. This means that a simple
machine learning model is going to be able to much more effectively classify data
points consisting of autoencoder embeddings as compared to PCA embeddings.

Figure 6-11. We visualize two-dimensional embeddings produced by PCA (left) and by
an autoencoder (right). Notice that the autoencoder does a much better job of clustering
codes of different digit classes.

In this section, we successfully set up and trained a feed-forward autoencoder and
demonstrated that the resulting embeddings were superior to PCA, a classical dimen‐
sionality reduction method. In the next section, we’ll explore a concept known as
denoising, which acts as a form of regularization by making our embeddings more
robust.

Implementing an Autoencoder in TensorFlow | 133

2 Vincent, Pascal, et al. “Extracting and Composing Robust Features with Denoising Autoencoders.” Proceedings
of the 25th International Conference on Machine Learning. ACM, 2008.

Denoising to Force Robust Representations
In this section, we’ll explore an additional mechanism, known as denoising, to
improve the ability of the autoencoder to generate embeddings that are resistant to
noise. The human ability for perception is surprisingly resistant to noise.
Take Figure 6-12, for example. Despite the fact that I’ve corrupted half of the pixels in
each image, you still have no problem making out the digit. In fact, even easily con‐
fused digits (like the 2 and the 7) are still distinguishable.

Figure 6-12. In the top row, we have original images from the MNIST dataset. In the
bottom row, we’ve randomly blacked out half of the pixels. Despite the corruption, the
digits in the bottom row are still identifiable by human perception.

One way to look at this phenomenon is probabilistically. Even if we’re exposed to a
random sampling of pixels from an image, if we have enough information, our brain
is still capable of concluding the ground truth of what the pixels represent with maxi‐
mal probability. Our mind is able to, quite literally, fill in the blanks to draw a conclu‐
sion. Even though only a corrupted version of a digit hits our retina, our brain is still
able to reproduce the set of activations (i.e., the code or embedding) that we normally
would use to represent the image of that digit. This is a property we might hope to
enforce in our embedding algorithm, and it was first explored by Vincent et al. in
2008, when they introduced the denoising autoencoder.2

The basic principles behind denoising are quite simple. We corrupt some fixed per‐
centage of the pixels in the input image by setting them to zero. Given an original
input X, let’s call the corrupted version C X . The denoising autoencoder is identical
to the vanilla autoencoder except for one detail: the input to the encoder network is
the corrupted C X instead of X. In other words, the autoencoder is forced to learn a

134 | Chapter 6: Embedding and Representation Learning

3 Bengio, Yoshua, et al. “Generalized Denoising Auto-Encoders as Generative Models.” Advances in Neural
Information Processing Systems. 2013.

code for each input that is resistant to the corruption mechanism and is able to inter‐
polate through the missing information to recreate the original, uncorrupted image.

We can also think about this process more geometrically. Let’s say we had a two-
dimensional dataset with various labels. Let’s take all of the data points in a particular
category (i.e., with some fixed label), and call this subset of data points S. While any
arbitrary sampling of points could end up taking any form while visualized, we pre‐
sume that for real-life categories, there is some underlying structure that unifies all of
the points in S. This underlying, unifying geometric structure is known as a manifold.
The manifold is the shape that we want to capture when we reduce the dimensional‐
ity of our data; and as Alain and Bengio described in 2014, our autoencoder is implic‐
itly learning this manifold as it learns how to reconstruct data after pushing it
through a bottleneck (the code layer).3 The autoencoder must figure out whether a
point belongs to one manifold or another when trying to generate a reconstruction of
an instance with potentially different labels.

As an illustration, let’s consider the scenario in Figure 6-13, where the points in S are
a simple low-dimensional manifold (in this case, a circle which is colored black in the
diagram). In part A, we see our data points in S (black x’s) and the manifold that best
describes them. We also observe an approximation of our corruption operation.
Specifically, the red arrow and solid red circle demonstrate all the ways in which the
corruption could possibly move or modify a data point. Given that we are applying
this corruption operation to every data point (i.e., along the entire manifold), this
corruption operation artificially expands the dataset to not only include the manifold
but also all of the points in space around the manifold, up to a maximum margin of
error. This margin is demonstrated by the dotted red circles in A, and the dataset
expansion is illustrated by the red x’s in part B. Finally the autoencoder is forced to
learn to collapse all of the data points in this space back to the manifold. In other
words, by learning which aspects of a data point are generalizable, broad strokes and
which aspects are “noise,” the denoising autoencoder learns to approximate the
underlying manifold of S.

Denoising to Force Robust Representations | 135

Figure 6-13. The denoising objective enables our model to learn the manifold (black cir‐
cle) by learning to map corrupted data (red x’s) to uncorrupted data (black x’s) by mini‐
mizing the error (green arrows) between their representations

With the philosophical motivations of denoising in mind, we can now make a small
modification to our autoencoder script to build a denoising autoencoder:

def corrupt_input(x):
 corrupting_matrix = tf.random_uniform(shape=tf.shape(x),
 minval=0,maxval=2,dtype=tf.int32)
 return x * tf.cast(corrupting_matrix, tf.float32)

x = tf.placeholder("float", [None, 784]) # mnist data image of
 # shape 28*28=784
corrupt = tf.placeholder(tf.float32)
phase_train = tf.placeholder(tf.bool)

c_x = (corrupt_input(x) * corrupt) + (x * (1 - corrupt))

This code snippet corrupts the input if the corrupt placeholder is equal to 1, and it
refrains from corrupting the input if the corrupt placeholder tensor is equal to 0.
After making this modification, we can rerun our autoencoder, resulting in the
reconstructions shown in Figure 6-14. It’s quite apparent that the denoising autoen‐
coder has faithfully replicated our incredible human ability to fill in the missing pix‐
els.

136 | Chapter 6: Embedding and Representation Learning

Figure 6-14. We apply a corruption operation to the dataset and train a denoising
autoencoder to reconstruct the original, uncorrupted images

Sparsity in Autoencoders
One of the most difficult aspects of deep learning is a problem known as interpretabil‐
ity. Interpretability is a property of a machine learning model that measures how easy
it is to inspect and explain its process and/or output. Deep models are generally very
difficult to interpret because of the nonlinearities and massive numbers of parameters
that make up a model. While deep models are generally more accurate, a lack of
interpretability often hinders their adoption in highly valuable, but highly risky,
applications. For example, if a machine learning model is predicting that a patient has
or does not have cancer, the doctor will likely want an explanation to confirm the
model’s conclusion.

We can address one aspect of interpretability by exploring the characteristics of the
output of an autoencoder. In general, an autoencoder’s representations are dense,
and this has implications with respect to how the representation changes as we make
coherent modifications to the input. Consider the situation in Figure 6-15.

Sparsity in Autoencoders | 137

Figure 6-15. The activations of a dense representation combine and overlay information
from multiple features in ways that are difficult to interpret

The autoencoder produces a dense representation, that is, the representation of the
original image is highly compressed. Because we only have so many dimensions to
work with in the representation, the activations of the representation combine infor‐
mation from multiple features in ways that are extremely difficult to disentangle. The
result is that as we add components or remove components, the output representa‐
tion changes in unexpected ways. It’s virtually impossible to interpret how and why
the representation is generated in the way it is.

The ideal outcome for us is if we can build a representation where there is a 1-to-1
correspondence, or close to a 1-to-1 correspondence, between high-level features and
individual components in the code. When we are able to achieve this, we get very
close to the system described in Figure 6-16. Part A of the figure shows how the rep‐
resentation changes as we add and remove components, and part B color-codes the
correspondence between strokes and the components in the code. In this setup, it’s
quite clear how and why the representation changes—the representation is very
clearly the sum of the individual strokes in the image.

138 | Chapter 6: Embedding and Representation Learning

Figure 6-16. With the right combination of space and sparsity, a representation is more
interpretable. In A, we show how activations in the representation change with the addi‐
tion and removal of strokes. In B, we color-code the activations that correspond to each
stroke to highlight our ability to interpret how a stroke affects the representation.

While this is the ideal outcome, we’ll have to think through what mechanisms we can
leverage to enable this interpretability in the representation. The issue here is clearly
the bottlenecked capacity of the code layer; but unfortunately, increasing the capacity
of the code layer alone is not sufficient. In the medium case, while we can increase the
size of the code layer, there is no mechanism that prevents each individual feature
picked up by the autoencoder from affecting a large fraction of the components with
smaller magnitudes. In the more extreme case, where the features that are picked up
are more complex and therefore more bountiful, the capacity of the code layer may be
even larger than the dimensionality of the input. In this case, the code layer has so
much capacity that the model could quite literally perform a “copy” operation where
the code layer learns no useful representation.

What we really want is to force the autoencoder to utilize as few components of the
representation vector as possible, while still effectively reconstructing the input. This
is very similar to the rationale behind using regularization to prevent overfitting in
simple neural networks, as we discussed in Chapter 2, except we want as many com‐
ponents to be zero (or extremely close to zero) as possible. As in Chapter 2, we’ll ach‐

Sparsity in Autoencoders | 139

4 Ranzato, Marc’Aurelio, et al. “Efficient Learning of Sparse Representations with an Energy-Based Model.” Pro‐
ceedings of the 19th International Conference on Neural Information Processing Systems. MIT Press, 2006.

5 Ranzato, Marc’Aurelio, and Martin Szummer. “Semi-supervised Learning of Compact Document Representa‐
tions with Deep Networks.” Proceedings of the 25th International Conference on Machine Learning. ACM, 2008.

6 Makhzani, Alireza, and Brendan Frey. “k-Sparse Autoencoders.” arXiv preprint arXiv:1312.5663 (2013).

ieve this by modifying the objective function with a sparsity penalty, which increases
the cost of any representation that has a large number of nonzero components:

 ESparse = E + β · SparsityPenalty

The value of β determines how strongly we favor sparsity at the expense of generating
better reconstructions. For the mathematically inclined, you would do this by treating
the values of each of the components of every representation as the outcome of a ran‐
dom variable with an unknown mean. We would then employ a measure of diver‐
gence comparing the distribution of observations of this random variable (the values
of each component) and the distribution of a random variable whose mean is known
to be 0. A measure that is often used to this end is the Kullback-Leibler (often
referred to as KL) divergence. Further discussion on sparsity in autoencoders is
beyond the scope of this text, but they are covered by Ranzato et al. (20074 and
20085). More recently, the theoretical properties and empirical effectiveness of intro‐
ducing an intermediate function before the code layer that zeroes out all but k of the
maximum activations in the representation were investigated by Makhzani and Frey
(2014).6 These k-Sparse autoencoders were shown to be just as effective as other mech‐
anisms of sparsity despite being shockingly simple to implement and understand (as
well as computationally more efficient).

This concludes our discussion of autoencoders. We’ve explored how we can use
autoencoders to find strong representations of data points by summarizing their con‐
tent. This mechanism of dimensionality reduction works well when the independent
data points are rich and contain all of the relevant information pertaining to their
structure in their original representation. In the next section, we’ll explore strategies
that we can use when the main source of information is in the context of the data
point instead of the data point itself.

When Context Is More Informative than the Input Vector
In the previous sections of this chapter, we’ve mostly focused on the concept of
dimensionality reduction. In dimensionality reduction, we generally have rich inputs
which contain lots of noise on top of the core, structural information that we care
about. In these situations, we want to extract this underlying information while
ignoring the variations and noise that are extraneous to this fundamental under‐
standing of the data.

140 | Chapter 6: Embedding and Representation Learning

In other situations, we have input representations that say very little at all about the
content that we are trying to capture. In these situations, our goal is not to extract
information, but rather, to gather information from context to build useful represen‐
tations. All of this probably sounds too abstract to be useful at this point, so let’s con‐
cretize these ideas with a real example.

Building models for language is a tricky business. The first problem we have to over‐
come when building language models is finding a good way to represent individual
words. At first glance, it’s not entirely clear how one builds a good representation.
Let’s start with the naive approach, considering the illustrative example
in Figure 6-17.

Figure 6-17. An example of generating one-hot vector representations for words using a
simple document

If a document has a vocabulary V with V words, we can represent the words with
one-hot vectors. In other words, we have V -dimensional representation vectors, and
we associate each unique word with an index in this vector. To represent unique
word wi, we set the ith component of the vector to be 1, and zero out all of the other
components.

However, this representation scheme seems rather arbitrary. This vectorization does
not make similar words into similar vectors. This is problematic, because we’d like
our models to know that the words “jump” and “leap” have very similar meanings.
Similarly we’d like our models to know when words are verbs or nouns or preposi‐
tions. The naive one-hot encoding of words to vectors does not capture any of these

When Context Is More Informative than the Input Vector | 141

characteristics. To address this challenge, we’ll need to find some way of discovering
these relationships and encoding this information into a vector.

It turns out that one way to discover relationships between words is by analyzing
their surrounding context. For example, synonyms such as “jump” and “leap” both
can be used interchangeably in their respective contexts. In addition, both words gen‐
erally appear when a subject is performing the action over a direct object. We use this
principle all the time when we run across new vocabulary while reading. For example,
if we read the sentence “The warmonger argued with the crowd,” we can immediately
draw conclusions about the word “warmonger” even if we don’t already know the
dictionary definition. In this context, “warmonger” precedes a word we know to be a
verb, which makes it likely that “warmonger” is a noun and the subject of this sen‐
tence. Also, the “warmonger” is “arguing,” which might imply that a “warmonger” is
generally a combative or argumentative individual. Overall, as illustrated in
Figure 6-18, by analyzing the context (i.e., a fixed window of words surrounding a
target word), we can quickly surmise the meaning of the word.

Figure 6-18. We can identify words with similar meanings based on their contexts. For
example, the words “jumps” and “leaps” should have similar vector representations
because they are virtually interchangeable. Moreover, we can draw conclusions about
what the words “jumps” and “leaps” mean just by looking at the words around them.

It turns out we can use the same principles we used when building the autoencoder to
build a network that builds strong, distributed representations. Two strategies are
shown in Figure 6-19. One possible method (shown in A) passes the target through
an encoder network to create an embedding. Then we have a decoder network take

142 | Chapter 6: Embedding and Representation Learning

7 Mikolov, Tomas, et al. “Distributed Representations of Words and Phrases and their Compositionality.”
Advances in Neural Information Processing Systems. 2013.

8 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estimation of Word Representations in
Vector Space” ICLR Workshop, 2013.

this embedding; but instead of trying to reconstruct the original input as we did with
the autoencoder, the decoder attempts to construct a word from the context. The sec‐
ond possible method (shown in B) does exactly the reverse: the encoder takes a word
from the context as input, producing the target.

Figure 6-19. General architectures for designing encoders and decoders that generate
embeddings by mapping words to their respective contexts (A) or vice versa (B)

In the next section, we’ll describe how we use this strategy (along with some slight
modifications for performance) to produce word embeddings in practice.

The Word2Vec Framework
Word2Vec, a framework for generating word embeddings, was pioneered by Mikolov
et al. The original paper detailed two strategies for generating embeddings, very simi‐
lar to the two strategies for encoding context we discussed in the previous section.

The first flavor of Word2Vec Mikolov et al. introduced was the Continuous Bag of
Words (CBOW) model.7 This model is much like strategy B from the previous sec‐
tion. The CBOW model used the encoder to create an embedding from the full con‐
text (treated as one input) and predict the target word. It turns out this strategy works
best for smaller datasets, an attribute that is further discussed in the original paper.

The second flavor of Word2Vec is the Skip-Gram model, introduced by Mikolov et al.
8. The Skip-Gram model does the inverse of CBOW, taking the target word as an

The Word2Vec Framework | 143

9 https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup

input, and then attempting to predict one of the words in the context. Let’s walk
through a toy example to explore what the dataset for a Skip-Gram model looks like.

Consider the sentence “the boy went to the bank.” If we broke this sentence down into
a sequence of (context, target) pairs, we would obtain [([the, went], boy), ([boy, to],
went), ([went, the], to), ([to, bank], the)]. Taking this a step further, we have to split
each (context, target) pair into (input, output) pairs where the input is the target and
the output is one of the words from the context. From the first pair ([the, went], boy),
we would generate the two pairs (boy, the) and (boy, went). We continue to apply this
operation to every (context, target) pair to build our dataset. Finally, we replace each
word with its unique index i ∈ 0, 1, . . . , V − 1 corresponding to its index in the
vocabulary.

The structure of the encoder is surprisingly simple. It is essentially a lookup table
with V rows, where the ith row is the embedding corresponding to the ith vocabulary
word. All the encoder has to do is take the index of the input word and output the
appropriate row in the lookup table. This an efficient operation because on a GPU,
this operation can be represented as a product of the transpose of the lookup table
and the one-hot vector representing the input word. We can implement this simply in
TensorFlow with the following TensorFlow function:

tf.nn.embedding_lookup(params, ids, partition_strategy='mod',
 name=None, validate_indices=True)

Where params is the embedding matrix, and ids is a tensor of indices we want to
look up. For information on optional parameters, we refer the curious reader to the
Tensorflow API documentation.9

The decoder is slightly trickier because we make some modifications for perfor‐
mance. The naive way to construct the decoder would be to attempt to reconstruct
the one-hot encoding vector for the output, which we could implement with a run-
of-the-mill feed-forward layer coupled with a softmax. The only concern is that it’s
inefficient because we have to produce a probability distribution over the whole
vocabulary space.

To reduce the number of parameters, Mikolov et al. used a strategy for implementing
the decoder known as noise-contrastive estimation (NCE). The strategy is illustrated
in Figure 6-20.

144 | Chapter 6: Embedding and Representation Learning

https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup

Figure 6-20. An illustration of how noise-contrastive estimation works. A binary logistic
regression compares the embedding of the target with the embedding of a context word
and randomly sampled noncontext words. We construct a loss function describing how
effectively the embeddings enable identification of words in the context of the target ver‐
sus words outside the context of the target.

The NCE strategy uses the lookup table to find the embedding for the output, as well
as embeddings for random selections from the vocabulary that are not in the context
of the input. We then employ a binary logistic regression model that, one at a time,
takes the input embedding and the embedding of the output or random selection,
and then outputs a value between 0 to 1 corresponding to the probability that the
comparison embedding represents a vocabulary word present in the input’s context.
We then take the sum of the probabilities corresponding to the noncontext compari‐
sons and subtract the probability corresponding to the context comparison. This
value is the objective function that we want to minimize (in the optimal scenario
where the model has perfect performance, the value will be -1). Implementing NCE
in TensorFlow utilizes the following code snippet:

tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled,
 num_classes, num_true=1, sampled_values=None,
 remove_accidental_hits=False, partition_strategy=
 'mod',
 name='nce_loss')

The Word2Vec Framework | 145

The weights should have the same dimensions as the embedding matrix, and the bia
ses should be a tensor with size equal to the vocabulary. The inputs are the results
from the embedding lookup, num_sampled is the number of negative samples we use
to compute the NCE, and num_classes is the vocabulary size.

While Word2Vec is admittedly not a deep machine learning model, we discuss it here
for many reasons. First, it thematically represents a strategy (finding embeddings
using context) that generalizes to many deep learning models. When we learn about
models for sequence analysis in Chapter 7, we’ll see this strategy employed for gener‐
ating skip-thought vectors to embed sentences. Moreover, when we start building
more and more models for language starting in Chapter 7, we’ll find that using
Word2Vec embeddings instead of one-hot vectors to represent words will yield far
superior results.

Now that we understand how to architect the Skip-Gram model and its importance,
we can start implementing it in TensorFlow.

Implementing the Skip-Gram Architecture
To build the dataset for our Skip-Gram model, we’ll utilize a modified version of the
TensorFlow Word2Vec data reader in input_word_data.py. We’ll start off by setting a
couple of important parameters for training and regularly inspecting our model. Of
particular note, we employ a minibatch size of 32 examples and train for 5 epochs
(full passes through the dataset). We’ll utilize embeddings of size 128. We’ll use a con‐
text window of five words to the left and to the right of each target word, and sample
four context words from this window. Finally, we’ll use 64 randomly chosen non-
context words for NCE.

Implementing the embedding layer is not particularly complicated. We merely have
to initialize the lookup table with a matrix of values:

def embedding_layer(x, embedding_shape):
 with tf.variable_scope("embedding"):
 embedding_init = tf.random_uniform(embedding_shape,
 -1.0, 1.0)
 embedding_matrix = tf.get_variable("E",
 initializer=embedding_init)
 return tf.nn.embedding_lookup(embedding_matrix, x),
 embedding_matrix

We utilize TensorFlow’s built-in tf.nn.nce_loss to compute the NCE cost for each
training example, and then compile all of the results in the minibatch into a single
measurement:

def noise_contrastive_loss(embedding_lookup, weight_shape,
 bias_shape, y):
 with tf.variable_scope("nce"):

146 | Chapter 6: Embedding and Representation Learning

 nce_weight_init = tf.truncated_normal(weight_shape,
 stddev=1.0/(
 weight_shape[1])**0.5)
 nce_bias_init = tf.zeros(bias_shape)
 nce_W = tf.get_variable("W",
 initializer=nce_weight_init)
 nce_b = tf.get_variable("b", initializer=nce_bias_init)

 total_loss = tf.nn.nce_loss(nce_W, nce_b,
 embedding_lookup,
 y, neg_size,
 data.vocabulary_size)
 return tf.reduce_mean(total_loss)

Now that we have our objective function expressed as a mean of the NCE costs, we
set up the training as usual. Here, we follow in the footsteps of Mikolov et al. and
employ stochastic gradient descent with a learning rate of 0.1:

def training(cost, global_step):
 with tf.variable_scope("training"):
 summary_op = tf.scalar_summary("cost", cost)
 optimizer = tf.train.GradientDescentOptimizer(
 learning_rate)
 train_op = optimizer.minimize(
 cost, global_step=global_step)
 return train_op, summary_op

We also inspect the model regularly using a validation function, which normalizes the
embeddings in the lookup table and uses cosine similarity to compute distances for a
set of validation words from all other words in the vocabulary:

def validation(embedding_matrix, x_val):
 norm = tf.reduce_sum(embedding_matrix**2, 1,
 keep_dims=True)**0.5
 normalized = embedding_matrix/norm
 val_embeddings = tf.nn.embedding_lookup(normalized, x_val)
 cosine_similarity = tf.matmul(val_embeddings, normalized,
 transpose_b=True)
 return normalized, cosine_similarity

Putting all of these components together, we’re finally ready to run the Skip-Gram
model. We skim over this portion of the code because it is very similar to how we
constructed models in the past. The only difference is the additional code during the
inspection step. We randomly select 20 validation words out of the 500 most common
words in our vocabulary of 10,000 words. For each of these words, we use the cosine
similarity function we built to find the nearest neighbors:

Implementing the Skip-Gram Architecture | 147

if __name__ == '__main__':

 with tf.Graph().as_default():

 with tf.variable_scope("skipgram_model"):

 x = tf.placeholder(tf.int32, shape=[batch_size])
 y = tf.placeholder(tf.int32, [batch_size, 1])
 val = tf.constant(val_examples, dtype=tf.int32)
 global_step = tf.Variable(0, name='global_step',
 trainable=False)

 e_lookup, e_matrix =
 embedding_layer(x,
 [data.vocabulary_size, embedding_size])

 cost = noise_contrastive_loss(e_lookup,
 [data.vocabulary_size,
 embedding_size],
 [data.vocabulary_size], y)

 train_op, summary_op = training(cost, global_step)

 val_op = validation(e_matrix, val)

 sess = tf.Session()

 train_writer = tf.train.SummaryWriter(
 "skipgram_logs/", graph=sess.graph)

 init_op = tf.initialize_all_variables()

 sess.run(init_op)

 step = 0
 avg_cost = 0

 for epoch in xrange(training_epochs):
 for minibatch in xrange(batches_per_epoch):

 step +=1

 mbatch_x, mbatch_y = data.generate_batch(
 batch_size,
 num_skips, skip_window)
 feed_dict = {x : mbatch_x, y : mbatch_y}

 _, new_cost, train_summary = sess.run([
 train_op, cost,
 summary_op],
 feed_dict=feed_dict)
 train_writer.add_summary(train_summary,

148 | Chapter 6: Embedding and Representation Learning

 sess.run(global_step))
 # Compute average loss
 avg_cost += new_cost/display_step

 if step % display_step == 0:
 print "Elapsed:", str(step), "batches.
 Cost =",
 "{:.9f}".format(avg_cost)
 avg_cost = 0

 if step % val_step == 0:
 _, similarity = sess.run(val_op)
 for i in xrange(val_size):
 val_word = data.reverse_dictionary
 [val_examples[i]]
 neighbors = (-similarity[
 i, :]).argsort()
 [1:top_match+1]
 print_str = "Nearest neighbor of
 %s:"
 % val_word
 for k in xrange(top_match):
 print_str += " %s," %
 data.reverse_dictionary[
 neighbors[k]]
 print print_str[:-1]

 final_embeddings, _ = sess.run(val_op)

The code starts to run, and we can begin to see how the model evolves over time. At
the beginning, the model does a poor job of embedding (as is apparent from the
inspection step). However, by the time training completes, the model has clearly
found representations that effectively capture the meanings of individual words:

ancient: egyptian, cultures, mythology, civilization, etruscan,
greek, classical, preserved

however: but, argued, necessarily, suggest, certainly, nor,
believe, believed

type: typical, kind, subset, form, combination, single,
description, meant

white: yellow, black, red, blue, colors, grey, bright, dark

system: operating, systems, unix, component, variant, versions,
version, essentially

Implementing the Skip-Gram Architecture | 149

energy: kinetic, amount, heat, gravitational, nucleus,
radiation, particles, transfer

world: ii, tournament, match, greatest, war, ever, championship,
cold

y: z, x, n, p, f, variable, mathrm, sum,

line: lines, ball, straight, circle, facing, edge, goal, yards,

among: amongst, prominent, most, while, famous, particularly,
argue, many

image: png, jpg, width, images, gallery, aloe, gif, angel

kingdom: states, turkey, britain, nations, islands, namely,
ireland, rest

long: short, narrow, thousand, just, extended, span, length,
shorter

through: into, passing, behind, capture, across, when, apart,
goal

i: you, t, know, really, me, want, myself, we

source: essential, implementation, important, software, content,
genetic, alcohol, application

because: thus, while, possibility, consequently, furthermore,
but, certainly, moral

eight: six, seven, five, nine, one, four, three, b

french: spanish, jacques, pierre, dutch, italian, du, english,
belgian

150 | Chapter 6: Embedding and Representation Learning

written: translated, inspired, poetry, alphabet, hebrew,
letters, words, read

While not perfect, there are some strikingly meaningful clusters captured here. Num‐
bers, countries, and cultures are clustered close together. The pronoun “I” is clustered
with other pronouns. The word “world” is interestingly close to both “championship”
and “war.” And the word “written” is found to be very similar to “translated,” “poetry,”
“alphabet,” “letters,” and “words.”

Finally, we conclude this section by visualizing our word embeddings in Figure 6-21.
To display our 128-dimensional embeddings in 2-dimensional space, we’ll use a visu‐
alization method known as t-SNE. If you’ll recall, we also used t-SNE in Chapter 5 to
visualize the relationships between images in ImageNet. Using t-SNE is quite simple,
as it has a built-in function in the commonly used machine learning library scikit-
learn.

We can construct the visualization using the following code:

tsne = TSNE(perplexity=30, n_components=2, init='pca',
 n_iter=5000)
plot_embeddings = np.asfarray(final_embeddings[:plot_num,:],
 dtype='float')
low_dim_embs = tsne.fit_transform(plot_embeddings)
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
data.plot_with_labels(low_dim_embs, labels)

For a more detailed exploration of the properties of word embeddings and interesting
patterns (verb tenses, countries and capitals, analogy completion, etc.), we refer the
curious reader to the original Mikolov et al. paper.

Implementing the Skip-Gram Architecture | 151

Figure 6-21. Visualization of our Skip-Gram embeddings using t-SNE. We notice that
similar concepts are closer together than disparate concepts, indicating that our embed‐
dings encode meaningful information about the functions and definitions of individual
words.

Summary
In this chapter, we explored various methods in representation learning. We learned
about how we can perform effective dimensionality reduction using autoencoders.
We also learned about denoising and sparsity, which augment autoencoders with use‐
ful properties. After discussing autoencoders, we shifted our attention to representa‐
tion learning when context of an input is more informative than the input itself. We
learned how to generate embeddings for English words using the Skip-Gram model,
which will prove useful as we explore deep learning models for understanding lan‐
guage. In the next chapter, we will build on this tangent to analyze language and other
sequences using deep learning.

152 | Chapter 6: Embedding and Representation Learning

1 https://mostafa-samir.github.io/

CHAPTER 7

Models for Sequence Analysis

Mostafa Samir1 and Surya Bhupatiraju

Analyzing Variable-Length Inputs
Up until now, we’ve only worked with data with fixed sizes: images from MNIST,
CIFAR-10, and ImageNet. These models are incredibly powerful, but there are many
situations in which fixed-length models are insufficient. The vast majority of interac‐
tions in our daily lives require a deep understanding of sequences—whether it’s read‐
ing the morning newspaper, making a bowl of cereal, listening to the radio, watching
a presentation, or deciding to execute a trade on the stock market. To adapt to
variable-length inputs, we’ll have to be a little bit more clever about how we approach
designing deep learning models.

In Figure 7-1, we illustrate how our feed-forward neural networks break when ana‐
lyzing sequences. If the sequence is the same size as the input layer, the model can
perform as we expect it to. It’s even possible to deal with smaller inputs by padding
zeros to the end of the input until it’s the appropriate length. However, the moment
the input exceeds the size of the input layer, naively using the feedforward network
no longer works.

153

https://mostafa-samir.github.io/

Figure 7-1. Feed-forward networks thrive on fixed input size problems. Zero padding can
address the handling of smaller inputs, but when naively utilized, these models break
when inputs exceed the fixed input size.

Not all hope is lost, however. In the next couple of sections, we’ll explore several
strategies we can leverage to “hack” feedfoward networks to handle sequences. Later
in the chapter, we’ll analyze the limitations of these hacks and discuss new architec‐
tures to address them. Finally, we will conclude the chapter by discussing some of the
most advanced architectures explored to date to tackle some of the most difficult
challenges in replicating human-level logical reasoning and cognition over sequences.

154 | Chapter 7: Models for Sequence Analysis

Tackling seq2seq with Neural N-Grams
In this section, we’ll begin exploring a feed-forward neural network architecture that
can process a body of text and produce a sequence of part-of-speech (POS) tags. In
other words, we want to appropriately label each word in the input text as a noun,
verb, preposition, and so on. An example of this is shown in Figure 7-2. While it’s not
the same complexity as building an AI that can answer questions after reading a story,
it’s a solid first step toward developing an algorithm that can understand the meaning
of how words are used in a sentence. This problem is also interesting because it is an
instance of a class of problems known as seq2seq, where the goal is to transform an
input sequence into a corresponding output sequence. Other famous seq2seq prob‐
lems include translating text between languages (which we will tackle later in this
chapter), text summarization, and transcribing speech to text.

Figure 7-2. An example of an accurate POS parse of an English sentence

As we discussed, it’s not obvious how we might take a body of text all at once to pre‐
dict the full sequence of POS tags. Instead, we leverage a trick that is akin to the way
we developed distributed vector representations of words in the previous chapter.
The key observation is this: it is not necessary to take into account long-term dependen‐
cies to predict the POS of any given word.

The implication of this observation is that instead of using the whole sequence to pre‐
dict all of the POS tags simultaneously, we can predict each POS tag one at a time by
using a fixed-length subsequence. In particular, we utilize the subsequence starting
from the word of interest and extending n words into the past. This neural n-gram
strategy is depicted in Figure 7-3.

Tackling seq2seq with Neural N-Grams | 155

Figure 7-3. Using a feed-forward network to perform seq2seq when we can ignore long-
term dependencies

Specifically, when we predict the POS tag for the ith word in the input, we utilize the
the i − n + 1st, i − n + 2nd, . . . , ith words as the input. We’ll refer to this subsequence
as the context window. In order to process the entire text, we’ll start by positioning the
network at the very beginning of the text. We’ll then proceed to move the network’s
context window one word at a time, predicting the POS tag of the rightmost word,
until we reach the end of the input.

Leveraging the word embedding strategy from last chapter, we’ll also use condensed
representations of the words instead of one-hot vectors. This will allow us to reduce
the number of parameters in our model and make learning faster.

Implementing a Part-of-Speech Tagger
Now that we have a strong understanding of the POS network architecture, we can
dive into the implementation. On a high level, the network consists of an input layer
that leverages a 3-gram context window. We’ll utilize word embeddings that are 300-
dimensional, resulting in a context window of size 900. The feed-forward network
will have two hidden layers of size 512 neurons and 256 neurons, respectively. Finally,
the output layer will be a softmax calculating the probability distribution of the POS
tag output over a space of 44 possible tags. As usual, we’ll use the Adam optimizer
with our default hyperparameter settings, train for a total of 1,000 epochs, and lever‐
age batch-normalization for regularization.

156 | Chapter 7: Models for Sequence Analysis

2 Google News download link: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
3 http://leveldb.org/
4 http://www.cnts.ua.ac.be/conll2000/chunking/

The actual network is extremely similar to networks we’ve implemented in the past.
Rather, the tricky part of building the POS tagger is in preparing the dataset. We’ll
leverage pretrained word embeddings generated from Google News.2 It includes vec‐
tors for 3 million words and phrases and was trained on roughly 100 billion words.
We can use the gensim Python package to read the dataset. We use pip to install the
package:

$ pip install gensim

We can subsequently load these vectors into memory using the following command:

from gensim.models import Word2Vec

model = Word2Vec.load_word2vec_format('/path/to/googlenews.bin',
 binary=True)

The issue with this operation, however, is that it’s incredibly slow (it can take up to an
hour, depending on the specs of your machine). To avoid loading the full dataset into
memory every single time we run our program, especially while debugging code or
experimenting with different hyperparameters, we cache the relevant subset of the
vectors to disk using a lightweight database known as LevelDB.3 To build the appro‐
priate Python bindings (which allow us to interact with a LevelDB instance from
Python), we simply use the following command:

$ pip install leveldb

As we mentioned, the gensim model contains three million words, which is larger
than our dataset. For the sake of efficiency, we’ll selectively cache word vectors for
words in our dataset and discard everything else. To figure out which words we’d like
to cache, let’s download the POS dataset from the CoNLL-2000 task.4

$ wget http://www.cnts.ua.ac.be/conll2000/chunking/train.txt.gz
 -O - | gunzip |
 cut -f1,2 -d" " > pos.train.txt

$ wget http://www.cnts.ua.ac.be/conll2000/chunking/test.txt.gz
 -O - | gunzip |
 cut -f1,2 -d " " > pos.test.txt

The dataset consists of contiguous text that is formatted as a sequence of rows, where
the first element is a word and the second element is the corresponding part of
speech. Here are the first several lines of the training dataset:

Confidence NN
in IN

Implementing a Part-of-Speech Tagger | 157

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
http://leveldb.org/
http://www.cnts.ua.ac.be/conll2000/chunking/

the DT
pound NN
is VBZ
widely RB
expected VBN
to TO
take VB
another DT
sharp JJ
dive NN
if IN
trade NN
figures NNS
for IN
September NNP
, ,
due JJ
for IN
release NN
tomorrow NN
...

To match the formatting of the dataset to the gensim model, we’ll have to do some
preprocessing. For example, the model replaces digits with '#' characters, combines
separate words into entities where appropriate (e.g., considering “New_York” as a sin‐
gle token instead of two separate words), and utilizes underscores where the raw data
uses dashes. We preprocess the dataset to conform to this model schema with the fol‐
lowing code (analogous code is used to process the training data):

with open("/path/to/pos.train.txt") as f:
 train_dataset_raw = f.readlines()
 train_dataset_raw = [e.split() for e in
 train_dataset_raw if len(e.split()) > 0]

 counter = 0
 while counter < len(train_dataset_raw):
 pair = train_dataset_raw[counter]
 if counter < len(train_dataset_raw) - 1:
 next_pair = train_dataset_raw[counter + 1]
 if (pair[0] + "_" + next_pair[0] in model) and
 (pair[1] == next_pair[1]):
 train_dataset.append([pair[0] + "_" +
 next_pair[0], pair[1]])
 counter += 2
 continue

 word = re.sub("\d", "#", pair[0])
 word = re.sub("-", "_", word)

 if word in model:
 train_dataset.append([word, pair[1]])
 counter += 1

158 | Chapter 7: Models for Sequence Analysis

 continue

 if "_" in word:
 subwords = word.split("_")
 for subword in subwords:
 if not (subword.isspace() or len(subword) == 0):
 train_dataset.append([subword, pair[1]])
 counter += 1
 continue

 train_dataset.append([word, pair[1]])
 counter += 1

 with open('/path/to/pos.train.processed.txt', 'w')
 as train_file: for item in train_dataset:
 train_file.write("%s\n" % (item[0] + " " +
 item[1]))

Now that we’ve appropriately processed the datasets for use, we can load the words in
LevelDB. If the word or phrase is present in the gensim model, we can cache that in
the LevelDB instance. If not, we randomly select a vector to represent to the token,
and cache it so that we remember to use the same vector in case we encounter it
again:

db = leveldb.LevelDB("data/word2vecdb")
counter = 0
 for pair in train_dataset + test_dataset:
 dataset_vocab[pair[0]] = 1
 if pair[1] not in tags_to_index:
 tags_to_index[pair[1]] = counter
 index_to_tags[counter] = pair[1]
 counter += 1

 nonmodel_cache = {}

 counter = 1
 total = len(dataset_vocab.keys())
 for word in dataset_vocab:
 if counter % 100 == 0:
 print "Inserted %d words out of %d total" % (
 counter, total)
 if word in model:
 db.Put(word, model[word])
 elif word in nonmodel_cache:
 db.Put(word, nonmodel_cache[word])
 else:
 print word
 nonmodel_cache[word] = np.random.uniform(-0.25,
 0.25, 300).
 astype(np.float32)
 db.Put(word, nonmodel_cache[word])
 counter += 1

Implementing a Part-of-Speech Tagger | 159

After running the script for the first time, we can just load our data straight from the
database if it already exists:

db = leveldb.LevelDB("data/word2vecdb")

with open("data/pos_data/pos.train.processed.txt") as f:
 train_dataset = f.readlines()
 train_dataset = [element.split() for element in
 train_dataset if
 len(element.split()) > 0]

with open("data/pos_data/pos.train.processed.txt") as f:
 test_dataset = f.readlines()
 test_dataset = [element.split() for element in test_dataset
 if len(element.split()) > 0]

counter = 0
for pair in train_dataset + test_dataset:
 dataset_vocab[pair[0]] = 1
 if pair[1] not in tags_to_index:
 tags_to_index[pair[1]] = counter
 index_to_tags[counter] = pair[1]
 counter += 1

Finally, we build dataset objects for both training and test datasets, which we can uti‐
lize to generate minibatches for training and testing purposes. Building the dataset
object requires access to the LevelDB db, the dataset, a dictionary tags_to_index
that maps POS tags to indices in the output vector, and a boolean flat get_all that
determines whether getting the minibatch should retrieve the full set by default:

class POSDataset():
 def __init__(self, db, dataset, tags_to_index,
 get_all=False):
 self.db = db
 self.inputs = []
 self.tags = []
 self.ptr = 0
 self.n = 0
 self.get_all = get_all

 for pair in dataset:
 self.inputs.append(np.fromstring(db.Get(pair[0]),
 dtype=np.float32))
 self.tags.append(tags_to_index[pair[1]])

 self.inputs = np.array(self.inputs, dtype=np.float32)
 self.tags = np.eye(len(tags_to_index.keys()))
 [self.tags]

 def prepare_n_gram(self, n):
 self.n = n

160 | Chapter 7: Models for Sequence Analysis

 def minibatch(self, size):
 batch_inputs = []
 batch_tags = []
 if self.get_all:
 counter = 0
 while counter < len(self.inputs) - self.n + 1:
 batch_inputs.append(self.inputs[
 counter:counter+self.n].flatten())
 batch_tags.append(self.tags[counter +
 self.n - 1])
 counter += 1
 elif self.ptr + size < len(self.inputs) - self.n:
 counter = self.ptr
 while counter < self.ptr + size:
 batch_inputs.append(self.inputs
 [counter:counter+self.n].flatten())
 batch_tags.append(self.tags[counter +
 self.n - 1])
 counter += 1
 else:
 counter = self.ptr
 while counter < len(self.inputs) - self.n + 1:
 batch_inputs.append(self.inputs[
 counter:counter+self.n].flatten())
 batch_tags.append(self.tags[counter +
 self.n - 1])
 counter += 1

 counter2 = 0
 while counter2 < size - counter + self.ptr:
 batch_inputs.append(self.inputs[
 counter2:counter2+self.n].flatten())
 batch_tags.append(self.tags[
 counter2 + self.n - 1])
 counter2 += 1

 self.ptr = (self.ptr + size) % (len(self.inputs) -
 self.n)
 return np.array(batch_inputs, dtype=np.float32),
 np.array
 (batch_tags)

train = POSDataset(db, train_dataset, tags_to_index)
test = POSDataset(db, test_dataset, tags_to_index,
 get_all=True)

Finally, we design our feed-forward network similarly to our approaches in previous
chapters. We omit a discussion of the code and refer to the file feedfor

ward_pos.py in the book’s companion repository. To run the model with 3-gram
input vectors, we run the following command:

Implementing a Part-of-Speech Tagger | 161

$ python feedforward_pos.py 3

LOADING PRETRAINED WORD2VEC MODEL...
Using a 3-gram model
Epoch: 0001 cost = 3.149141798
Validation Error: 0.336273431778
Then ``
the DT
woman NN
, RP
after UH
grabbing VBG
her PRP
umbrella NN
, RP
went UH
to TO
the PDT
bank NN
to TO
deposit PDT
her PRP
cash NN
. SYM

Epoch: 0002 cost = 2.971566474
Validation Error: 0.300647974014
Then ``
the DT
woman NN
, RP
after UH
grabbing RBS
her PRP$
umbrella NN
, RP
went UH
to TO
the PDT
bank NN
to TO
deposit)
her PRP$
cash NN
. SYM

...

Every epoch, we manually inspect the model by parsing the sentence: “The woman,
after grabbing her umbrella, went to the bank to deposit her cash.” Within 100 epochs
of training, the algorithm achieves over 96% accuracy and nearly perfectly parses the

162 | Chapter 7: Models for Sequence Analysis

validation sentence (it makes the understandable mistake of confusing the possessive
pronoun and personal pronoun tags for the first appearance of the word “her”). We’ll
conclude this by including the visualizations of our model’s performance using Ten‐
sorBoard in Figure 7-4.

Figure 7-4. TensorBoard visualization of our feedfoward POS tagging model

The POS tagging model was a great exercise, but it was mostly rinsing and repeating
concepts we’ve learned in previous chapters. In the rest of the chapter, we’ll start to
think about much more complicated sequence-related learning tasks. To tackle these
more difficult problems, we’ll need to broach brand-new concepts, develop new
architectures, and start to explore the cutting edge of modern deep learning research.
We’ll start by tackling the problem of dependency parsing next.

Implementing a Part-of-Speech Tagger | 163

Dependency Parsing and SyntaxNet
The framework we used to solve the POS tagging task was rather simple. Sometimes
we need to be much more creative about how we tackle seq2seq problems, especially
as the complexity of the problem increases. In this section, we’ll explore strategies
that employ creative data structures to tackle difficult seq2seq problems. As a illustra‐
tive example, we’ll explore the problem of dependency parsing.

The idea behind building a dependency parse tree is to map the relationships between
words in a sentence. Take, for example, the dependency in Figure 7-5. The words “I”
and “taxi” are children of the word “took,” specifically as the subject and direct object
of the verb, respectively.

Figure 7-5. An example of a dependency parse, which generates a tree of relationships
between words in a sentence

One way to express a tree as a sequence is by linearizing it. Let’s consider the exam‐
ples in Figure 7-6. Essentially, if you have a graph with a root R, and children A (con‐
nected by edge r_a), B (connected by edge r_b), and C (connected by edge r_c), we
can linearize the representation as (R, r_a, A, r_b, B, r_c, C). We can even represent
more complex graphs. Let’s assume, for example, that node B actually has two more
children named D (connected by edge b_d) and E (connected by edge b_e). We can
represent this new graph as (R, r_a, A, r_b, [B, b_d, D, b_e, E], r_c, C).

164 | Chapter 7: Models for Sequence Analysis

Figure 7-6. We linearize two example trees, the diagrams omit edge labels for the sake of
visual clarity

Using this paradigm, we can take our example dependency parse and linearize it, as
shown in Figure 7-7.

Figure 7-7. Linearization of the dependency parse tree example

One interpretation of of this seq2seq problem would be to read the input sentence
and produce a sequence of tokens as an output that represents the linearization of the
input’s dependency parse. It’s not particularly clear, however, how we might port our
strategy from the previous section, where there was a clear one-to-one mapping
between words and their POS tags. Moreover, we could easily make decisions about a
POS tag by looking at the nearby context. For dependency parsing, there’s no clear
relationship between how words are ordered in the sentence and how tokens in the
linearization are ordered. It also seems like dependency parsing tasks us with identi‐
fying edges that may span a significantly large number of words. Therefore, at first
glance, it seems like this setup directly violates our assumption that we need not take
into account any long-term dependencies.

Dependency Parsing and SyntaxNet | 165

5 Nivre, Joakim. “Incrementality in Deterministic Dependency Parsing.” Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cognition Together. Association for Computational Linguis‐
tics, 2004.

6 Chen, Danqi, and Christopher D. Manning. “A Fast and Accurate Dependency Parser Using Neural Net‐
works.” EMNLP. 2014.

To make the problem more approachable, we instead reconsider the dependency
parsing task as finding a sequence of valid “actions” that generates the correct
dependency parse. This technique, known as the arc-standard system, was first
described by Nivre5 in 2004 and later leveraged in a neural context by Chen and Man‐
ning6 in 2014. In the arc-standard system, we start by putting the first two words of
the sentence in the stack and maintaining the remaining words in the buffer, as
shown in Figure 7-8.

Figure 7-8. At any step, we have three options: to shift a word from the buffer (blue) to
the stack (green), to draw an arc from the right element to the left element (left arc), or
to draw an arc from the left element to the right element (right arc)

At any step, we can take one of three possible classes of actions:

SHIFT
Move a word from the buffer to the front of the stack.

LEFT ARC
Combine the two elements at the front of the stack into a single unit where the
root of the rightmost element is the parent node and the root of leftmost element
is the child node.

RIGHT ARC
Combine the two elements at the front of the stack into a single unit where the
root of the left element is the parent node and the root of right element is the
child node.

166 | Chapter 7: Models for Sequence Analysis

We note that while there is only one way to perform a SHIFT, the ARC actions can be
of many flavors, each differentiated by the dependency label assigned to the arc that is
generated. That being said, we’ll simplify our discussions and illustrations in this sec‐
tion by considering each decision as a choice among three actions (rather than tens of
actions).

We finally terminate this process when the buffer is empty and the stack has one ele‐
ment in it (which represents the full dependency parse). To illustrate this process in
its entirety, we illustrate a sequence of actions that generates the dependency parse for
our example input sentence in Figure 7-9.

Figure 7-9. A sequence of actions that results in the correct dependency parse; we omit
labels

It’s not too difficult to reformulate this decision-making framework as a learning
problem. At every step, we take the current configuration, we vectorize the configura‐
tion by extracting a large number of features that describe the configuration (words
in specific locations of the stack/buffer, specific children of the words in these loca‐
tions, part of speech tags, etc.). During train time, we can feed this vector into a feed-
forward network and compare its prediction of the next action to take to a gold
standard decision made by a human linguist. To use this model in the wild, we can
take the action that the network recommends, apply it to the configuration, and use
this new configuration as the starting point for the next step (feature extraction,
action prediction, and action application). This process is shown in Figure 7-10.

Dependency Parsing and SyntaxNet | 167

7 https://github.com/tensorflow/models/tree/master/syntaxnet

Figure 7-10. A neural framework for arc-standard dependency parsing

Taken together, these ideas form the core for Google’s SyntaxNet, the state-of-the-art
open source implementation for dependency parsing. Delving into the nitty-gritty
aspects of implementation is beyond the scope of this text, but we refer the inspired
reader to the open source repository7, which contains an implementation of Parsey
McParseface, the most accurate publicly reported English language parser as of the
publication of this text.

Beam Search and Global Normalization
In the previous section, we described naive strategy for deploying SyntaxNet in prac‐
tice. The strategy was purely greedy; that is, we selected prediction with the highest
probability without being concerned that we might potentially paint ourselves into a
corner by making an early mistake. In the POS example, making an incorrect predic‐
tion was largely inconsequential. This is because each prediction could be considered
a purely independent subproblem (the results of a given prediction do not affect the
inputs of the next step).

This assumption no longer holds in SyntaxNet, because our prediction at
step n affects the input we use at step n + 1. This implies that any mistake we make
will influence all later decisions. Moreover, there’s no good way of “going backward”
and fixing mistakes when they become apparent. Garden path sentences are an
extreme case of where this is important. Consider the following sentence: “The com‐
plex houses married and single soldiers and their families.” The first glance pass-
through is confusing. Most people interpret “complex” as an adjective, “houses” as a

168 | Chapter 7: Models for Sequence Analysis

https://github.com/tensorflow/models/tree/master/syntaxnet

noun, and “married” as a past tense verb. This makes little semantic sense though,
and starts to break down as the rest of the sentence is read. Instead, we realize that
“complex” is a noun (as in a military complex) and that “houses” is a verb. In other
words, the sentence implies that the military complex contains soldiers (who may be
single or married) and their families. A greedy version of SyntaxNet would fail to cor‐
rect the early parse mistake of considering “complex” as an adjective describing the
“houses,” and therefore fail on the full version of the sentence.

To remedy this shortcoming, we utilize a strategy known as beam search, illustrated in
Figure 7-11. We generally leverage beam searches in situations like SyntaxNet, where
the output of our network at a particular step influences the inputs used in future
steps. The basic idea behind beam search is that instead of greedily selecting the most
probable prediction at each step, we maintain a beam of the most likely hypothesis
(up to a fixed beam size b) for the sequence of the first k actions and their associated
probabilities. Beam searching can be broken up into two major phases: expansion
and pruning.

Beam Search and Global Normalization | 169

Figure 7-11. An illustration of using beam search (with beam size 2) while deploying a
trained SyntaxNet model

During the expansion step, we take each hypothesis and consider it as a possible input
to SyntaxNet. Assume SyntaxNet produces a probability distribution over a space
of A total actions. We then compute the probability of each of the b A possible
hypotheses for the sequence of the first k + 1 actions. Then, during the pruning step,
we keep only the b hypothesis out of the b A total options with the largest probabili‐
ties. As Figure 7-11 illustrates, beam searching enables SyntaxNet to correct incorrect
predictions post facto by entertaining less probable hypotheses early that might turn
out to be more fruitful later in the sentence. In fact, digging deeper into the illustrated
example, a greedy approach would have suggested that the correct sequence of moves
would have been a SHIFT followed by a LEFT ARC. In reality, the best (highest prob‐
ability) option would have been to use a LEFT ARC followed by a RIGHT ARC.
Beam searching with beam size 2 surfaces this result.

170 | Chapter 7: Models for Sequence Analysis

8 Andor, Daniel, et al. “Globally Normalized Transition-Based Neural Networks.” arXiv preprint arXiv:
1603.06042 (2016).

9 Andor, Daniel et al. “Globally Normalized Transition-Based Neural Networks.” arXiv preprint arXiv:
1603.06042 (2016).

The full open source version takes this a full step further and attempts to bring the
concept of beam searching to the process of training the network. As Andor et al.
describe in 2016,8 this process of global normalization provides both strong theoreti‐
cal guarantees and clear performance gains relative to local normalization in prac‐
tice. In a locally normalized network, our network is tasked with selecting the best
action given a configuration. The network outputs a score that is normalized using a
softmax layer. This is meant to model a probability distribution over all possible
actions, provided the actions performed thus far. Our loss function attempts to force
the probability distribution to the ideal output (i.e., probability 1 for the correct
action and 0 for all other actions). The cross-entropy loss does a spectacular job of
ensuring this for us.

In a globally normalized network, our interpretation of the scores is slightly different.
Instead of putting the scores through a softmax to generate a per-action probability
distribution, we instead add up all the scores for a hypothesis action sequence. One
way of ensuring that we select the correct hypothesis sequence is by computing this
sum over all possible hypotheses and then applying a softmax layer to generate a
probability distribution. We could theoretically use the same cross-entropy loss func‐
tion as we used in the locally normalized network. The problem with this strategy,
however, is that there is an intractably large number of possible hypothesis sequen‐
ces. Even considering an average sentence length of 10 and a conservative total num‐
ber of 15 possible actions—1 shift and 7 labels for each of the left and right arcs—this
corresponds to 1,000,000,000,000,000 possible hypotheses.

To make this problem tractable, as shown in Figure 7-12, we apply a beam search,
with a fixed beam size, until we either 1) reach the end of the sentence, or 2) the cor‐
rect sequence of actions is no longer contained on the beam. We then construct a loss
function that tries to push the “gold standard” action sequence (highlighted in blue)
as high as possible on the beam by maximizing its score relative to the other hypothe‐
ses. While we won’t dive into the details of how we might construct this loss function
here, we refer the curious reader to the original paper by Andor et al. in 2016.9 The
paper also describes a more sophisticated POS tagger that uses global normalization
and beam search to significantly increase accuracy (compared to the POS tagger we
built earlier in the chapter).

Beam Search and Global Normalization | 171

Figure 7-12. We can make global normalization in SyntaxNet tractable by coupling
training and beam search

A Case for Stateful Deep Learning Models
While we’ve explored several tricks to adapt feed-forward networks to sequence
analysis, we’ve yet to truly find an elegant solution to sequence analysis. In the POS
tagger example, we made the explicit assumption that we can ignore long-term
dependencies. We were able to overcome some of the limitations of this assumption
by introducing the concepts of beam searching and global normalization, but even
still, the problem space was constrained to situations in which there was a one-to-one
mapping between elements in the input sequence to elements in the output sequence.
For example, even in the dependency parsing model, we had to reformulate the prob‐
lem to discover a one-to-one mapping between a sequence of input configurations
while constructing the parse tree and arc-standard actions.

Sometimes, however, the task is far more complicated than finding a one-to-one
mapping between input and output sequences. For example, we might want to
develop a model that can consume an entire input sequence at once and then con‐
clude if the sentiment of the entire input was positive or negative. We’ll build a simple
model to perform this task later in the chapter. We may want an algorithm that con‐
sumes a complex input (such as an image) and generate a sentence, one word at a
time, describing the input. We may event want to translate sentences from one lan‐
guage to another (e.g., from English to French). In all of these instances, there’s no
obvious mapping between input tokens and output tokens. Instead, the process is
more like the situation in Figure 7-13.

172 | Chapter 7: Models for Sequence Analysis

Figure 7-13. The ideal model for sequence analysis can store information in memory
over long periods of time, leading to a coherent “thought” vector that it can use to gener‐
ate an answer

The idea is simple. We want our model to maintain some sort of memory over the
span of reading the input sequence. As it reads the input, the model should able to
modify this memory bank, taking into account the information that it observes. By
the time it has reached the end of the input sequence, the internal memory contains a
“thought” that represents the key pieces of information, that is, the meaning, of the
original input. We should then, as shown in Figure 7-13, be able to use this thought
vector to either produce a label for the original sequence or produce an appropriate
output sequence (translation, description, abstractive summary, etc.).

The concept here isn’t something we’ve explored in any of the previous chapters.
Feed-forward networks are inherently “stateless.” After it’s been trained, the feed-
forward network is a static structure. It isn’t able to maintain memories between
inputs, or change how it processes an input based on inputs it has seen in the past. To
execute this strategy, we’ll need to reconsider how we construct neural networks to
create deep learning models that are “stateful.” To do this, we’ll have to return to how
we think about networks on an individual neuron level. In the next section, we’ll
explore how recurrent connections (as opposed to the feed-forward connections we
have studied this far) enable models to maintain state as we describe a class of mod‐
els known as recurrent neural networks (RNNs).

Recurrent Neural Networks
RNNs were sfirst introduced in the 1980s, but have regained popularity recently due
to several intellectual and hardware breakthroughs that have made them tractable to
train. RNNs are different from feed-forward networks because they leverage a special
type of neural layer, known as recurrent layers, that enable the network to maintain
state between uses of the network.

Recurrent Neural Networks | 173

Figure 7-14 illustrates the neural architecture of a recurrent layer. All of the neurons
have both 1) incoming connections emanating from all of the neurons of the previous
layer and 2) outgoing connections leading to all of the neurons to the subsequent
layer. We notice here, however, that these aren’t the only connections that neurons of
a recurrent layer have. Unlike a feed-forward layer, recurrent layers also have recur‐
rent connections, which propagate information between neurons of the same layer. A
fully connected recurrent layer has information flow from every neuron to every
other neuron in its layer (including itself). Thus a recurrent layer with r neurons has
a total of r2 recurrent connections.

Figure 7-14. A recurrent layer contains recurrent connections, that is to say, connections
between neurons that are located in the same layer

To better understand how RNNs work, let’s explore how one functions after it’s been
appropriately trained. Every time we want to process a new sequence, we create a
fresh instance of our model. We can reason about networks that contain recurrent
layers by dividing the lifetime of the network instance into discrete time steps. At
each time step, we feed the model the next element of the input. Feedforward con‐
nections represent information flow from one neuron to another where the data
being transferred is the computed neuronal activation from the current time step.
Recurrent connections, however, represent information flow where the data is the
stored neuronal activation from the previous time step. Thus, the activations of the
neurons in a recurrent network represent the accumulating state of the network
instance. The initial activations of neurons in the recurrent layer are parameters of
our model, and we determine the optimal values for them just like we determine the
optimal values for the weights of each connection during the process of training.

174 | Chapter 7: Models for Sequence Analysis

It turns out that, given a fixed lifetime (say t time steps) of an RNN instance, we can
actually express the instance as a feed-forward network (albeit irregularly structured).
This clever transformation, illustrated in Figure 7-15, is often referred to as “unroll‐
ing” the RNN through time. Let’s consider the example RNN in the figure. We’d like
to map a sequence of two inputs (each dimension 1) to a single output (also of
dimension 1). We perform the transformation by taking the neurons of the single
recurrent layer and replicating them it t times, once for each time step. We similarly
replicate the neurons of the input and output layers. We redraw the feed-forward
connections within each time replica just as they were in the original network. Then
we draw the recurrent connections as feed-forward connections from each time rep‐
lica to the next (since the recurrent connections carry the neuronal activation from
the previous time step).

Figure 7-15. We can run an RNN through time to express it as a feedforward network
that we can train using backpropagation

We can also now train the RNN by computing the gradient based on the unrolled ver‐
sion. This means that all of the backpropagation techniques that we utilized for feed-
forward networks also apply to training RNNs. We do run into one issue,
however. After every batch of training examples we use, we need to modify the
weights based on the error derivatives we calculate. In our unrolled network, we have
sets of connections that all correspond to the same connection in the original RNN.
The error derivatives calculated for these unrolled connections, however, are not
guaranteed to be (and, in practice, probably won’t be) equal. We can circumvent this
issue by averaging or summing the error derivatives over all the connections that
belong to the same set. This allows us to utilize an error derivative that considers all
of the dynamics acting on the weight of a connection as we attempt to force the net‐
work to construct an accurate output.

Recurrent Neural Networks | 175

10 Kilian, Joe, and Hava T. Siegelmann. “The dynamic universality of sigmoidal neural networks.” Information
and computation 128.1 (1996): 48-56.

The Challenges with Vanishing Gradients
Our motivation for using a stateful network model hinges on this idea of capturing
long-term dependencies in the input sequence. It seems reasonable that an RNN with
a large memory bank (i.e., a significantly sized recurrent layer) would be able to sum‐
marize these dependencies. In fact, from a theoretical perspective, Kilian and Siegel‐
mann demonstrated in 1996 that the RNN is a universal functional representation.10

In other words, with enough neurons and the right parameter settings, an RNN can
be used to represent any functional mapping between input and output sequences.

The theory is promising, but it doesn’t necessarily translate to practice. While it is
nice to know that it is possible for an RNN to represent any arbitrary function, it is
more useful to know whether it is practical to teach the RNN a realistic functional
mapping from scratch by applying gradient descent algorithms. If it turns out to be
impractical, we’ll be in hot water, so it will be useful for us to be rigorous in exploring
this question. Let’s start our investigation by considering the simplest possible RNN,
shown in Figure 7-16, with a single input neuron, a single output neuron, and a fully
connected recurrent layer with one neuron.

Figure 7-16. A single neuron, fully connected recurrent layer (both compressed and
unrolled) for the sake of investigating gradient-based learning algorithms

176 | Chapter 7: Models for Sequence Analysis

Let’s start off simple. Given nonlinearity f , we can express the activation h t of the
the hidden neuron of the recurrent layer at time step t as follows, where i t is the
incoming logit from the input neuron at time step t:

 h t = f win
t i t + wrec

t − 1 h t − 1

Let’s try to compute how the activation of the hidden neuron changes in response to
changes to the input logit from k time steps in the past. In analyzing this component
of the backpropagation gradient expressions, we can start to quantify how much
“memory” is retained from past inputs. We start by taking the partial derivative and
apply the chain rule:

 ∂h t

∂i t − k = f ′ win
t i t + wrec

t − 1 h t − 1 ∂

∂i t − k win
t i t + wrec

t − 1 h t − 1

Because the values of the input and recurrent weights are independent of the input
logit at time step t − k, we can further simplify this expression:

 ∂h t

∂i t − k = f ′ win
t i t + wrec

t − 1 h t − 1 wrec
t − 1 ∂h t − 1

∂i t − k

Because we care about the magnitude of this derivative, we can take the absolute
value of both sides. We also know that for all common nonlinearities (the tanh, logis‐
tic, and ReLU nonlinearities), the maximum value of f ′ is at most 1. This leads to
the following recursive inequality:

 ∂h t

∂i t − k ≤ wrec
t − 1 · ∂h t − 1

∂i t − k

We can continue to expand this inequality recursively until we reach the base case, at
step t − k:

 ∂h t

∂i t − k ≤ wrec
t − 1 · ... · wrec

t − k · ∂h t − k

∂i t − k

We can evaluate this partial derivative similarly to how we proceeded previously:

 h t − k = f win
t − k i t − k + wrec

t − k − 1 h t − k − 1

 ∂h t − k

∂i t − k = f ′ win
t − k i t − k + wrec

t − k − 1 h t − k − 1 ∂

∂i t − k win
t − k i t − k

+ wrec
t − k − 1 h t − k − 1

In this expression, the hidden activation at time t − k − 1 is independent of the value
of the input at t − k. Thus we can rewrite this expression as:

The Challenges with Vanishing Gradients | 177

 ∂h t − k

∂i t − k = f ′ win
t − k i t − k + wrec

t − k − 1 h t − k − 1 win
t − k

Finally, taking the absolute value on both sides and again applying the observation
about the maximum value of f ′ , we can write:

 ∂h t − k

∂i t − k ≤ win
t − k

This results in the final inequality (which we can simplify because we constrain the
connections at different time steps to have equal value):

 ∂h t

∂i t − k ≤ wrec
t − 1 · ... · wrec

t − k · win
t − k = wrec

k · win

This relationship places a strong upper bound on how much a change in the input at
time t − k can impact the hidden state at time t. Because the weights of our model are
initialized to small values at the beginning of training, the value of this derivative
approaches zero as k increases. In other words, the gradient quickly diminishes when
it’s computed with respect to inputs several time steps into the past, severely limiting
our model’s ability to learn long-term dependencies. This issue is commonly referred
to as the problem of vanishing gradients, and it severely impacts the learning capabili‐
ties of vanilla recurrent neural networks. In order to address this limitation, we will
spend the next section exploring an extraordinarily influential twist on recurrent lay‐
ers known as long short-term memory.

Long Short-Term Memory (LSTM) Units
In order to combat the problem of vanishing gradients, Sepp Hochreiter and Jürgen
Schmidhuber introduced the long short-term memory (LSTM) architecture. The basic
principle behind the architecture was that the network would be designed for the
purpose of reliably transmitting important information many time steps into the
future. The design considerations resulted in the architecture shown in Figure 7-17.

178 | Chapter 7: Models for Sequence Analysis

Figure 7-17. The architecture of an LSTM unit, illustrated at a tensor (designated by
arrows) and operation (designated by the purple blocks) level

For the purposes of this discussion, we’ll take a step back from the individual neuron
level and start talking about the network as collection tensors and operations on ten‐
sors. As the figure indicates, the LSTM unit is composed of several key components.
One of the core components of the LSTM architecture is the memory cell, a tensor
represented by the bolded loop in the center of the figure. The memory cell holds
critical information that it has learned over time, and the network is designed to
effectively maintain useful information in the memory cell over many time steps. At
every time step, the LSTM unit modifies the memory cell with new information with
three different phases. First, the unit must determine how much of the previous
memory to keep. This is determined by the keep gate, shown in detail in Figure 7-18.

Long Short-Term Memory (LSTM) Units | 179

Figure 7-18. Architecture of the keep gate of an LSTM unit

The basic idea of the keep gate is simple. The memory state tensor from the previous
time step is rich with information, but some of that information may be stale (and
therefore might need to be erased). We figure out which elements in the memory
state tensor are still relevant and which elements are irrelevant by trying to compute a
bit tensor (a tensor of zeros and ones) that we multiply with the previous state. If a
particular location in the bit tensor holds a 1, it means that location in the memory
cell is still relevant and ought to be kept. If that particular location instead held a 0, it
means that the location in the memory cell is no longer relevant and ought to be
eased. We approximate this bit tensor by concatenating the input of this time step and
the LSTM unit’s output from the previous time step and applying a sigmoid layer to
the resulting tensor. A sigmoidal neuron, as you may recall, outputs a value that is
either very close to 0 or very close to 1 most of the time (the only exception is when
the input is close to zero). As a result, the output of the sigmoidal layer is a close
approximation of a bit tensor, and we can use this to complete the keep gate.

Once we’ve figured out what information to keep in the old state and what to erase,
we’re ready to think about what information we’d like to write into the memory state.
This part of the LSTM unit is known as the write gate, and it’s depicted in
Figure 7-19. This is broken down into two major parts. The first component is figur‐
ing out what information we’d like to write into the state. This is computed by the
tanh layer to create an intermediate tensor. The second component is figuring out
which components of this computed tensor we actually want to include into the new
state and which we want to toss before writing. We do this by approximating a bit
vector of 0’s and 1’s using the same strategy (a sigmoidal layer) as we used in the keep

180 | Chapter 7: Models for Sequence Analysis

gate. We multiply the bit vector with our intermediate tensor and then add the result
to create the new state vector for the LSTM.

Figure 7-19. Architecture of the write gate of an LSTM unit

Finally, at every time step, we’d like the LSTM unit to provide an output. While we
could treat the state vector as the output directly, the LSTM unit is engineered to pro‐
vide more flexibility by emitting an output tensor that is a “interpretation” or external
“communication” of what the state vector represents. The architecture of the output
gate is shown in Figure 7-20. We use a nearly identical structure as the write gate: 1)
the tanh layer creates an intermediate tensor from the state vector, 2) the sigmoid
layer produces a bit tensor mask using the current input and previous output, and 3)
the intermediate tensor is multiplied with the bit tensor to produce the final output.

Long Short-Term Memory (LSTM) Units | 181

Figure 7-20. Architecture of the output gate of an LSTM unit

So why is this better than using a raw RNN unit? The key observation is how infor‐
mation propagates through the network when we unroll the LSTM unit through
time. The unrolled architecture is shown in Figure 7-21. At the very top, we can
observed the propagation of the state vector, whose interactions are primarily linear
through time. The result is that the gradient that relates an input several time steps in
the past to the current output does not attenuate as dramatically as in the vanilla
RNN architecture. This means that the LSTM can learn long-term relationships
much more effectively than our original formulation of the RNN.

Figure 7-21. Unrolling an LSTM unit through time

Finally, we want to understand how easy it is to generate arbitrary architectures with
LSTM units. How “composable” are LSTMs? Do we need to sacrifice any flexibility to
use LSTM units instead of a vanilla RNN? Well, just as we can we can stack RNN lay‐
ers to create more expressive models with more capacity, we can similarly stack
LSTM units, where the input of the second unit is the output of the first unit, the
input of the third unit is the output of the second, and so on. An illustration of how
this works is shown in Figure 7-22, with a multicellular made of two LSTM units.
This means that anywhere we use a vanilla RNN layer, we can easily substitute an
LSTM unit.

182 | Chapter 7: Models for Sequence Analysis

Figure 7-22. Composing LSTM units as one might stack recurrent layers in a neural net‐
work

Now that we have overcome the issue of vanishing gradients and understand the
inner workings of LSTM units, we’re ready to dive into the implementation of our
first RNN models.

TensorFlow Primitives for RNN Models
There are several primitives that TensorFlow provides that we can use out of the box
in order to build RNN models. First, we have tf.RNNCell objects that represent
either an RNN layer or an LSTM unit:

cell_1 = tf.nn.rnn_cell.BasicRNNCell(num_units, input_size=None,
 activation=tanh)
cell_2 = tf.nn.rnn_cell.BasicLSTMCell(num_units,

TensorFlow Primitives for RNN Models | 183

 forget_bias=1.0,
 input_size=None,
 state_is_tuple=True,
 activation=tanh)
cell_3 = tf.nn.rnn_cell.LSTMCell(num_units, input_size=None,
 use_peepholes=False,
 cell_clip=None,
 initializer=None,
 num_proj=None,
 proj_clip=None,
 num_unit_shards=1,
 num_proj_shards=1,
 forget_bias=1.0,
 state_is_tuple=True,
 activation=tanh)
cell_4 = tf.nn.rnn_cell.GRUCell(num_units, input_size=None,
 activation=tanh)

The BasicRNNCell abstraction represents a vanilla recurrent neuron layer. The
BasicLSTMCell represents a simple implementation of the LSTM unit, and the
LSTMCell represents an implementation with more configuration options (peephole
structures, clipping of state values, etc.). The TensorFlow library also includes a varia‐
tion of the LSTM unit known as the Gated Recurrent Unit, proposed in 2014 by
Yoshua Bengio’s group. The critical initialization variable for all of these cells is the
size of the hidden state vector or num_units.

In addition to the primitives, there are several wrappers to add to our arsenal. If we
want to stack recurrent units or layers, we can use the following:

cell_1 = tf.nn.rnn_cell.BasicLSTMCell(10)
cell_2 = tf.nn.rnn_cell.BasicLSTMCell(10)
full_cell = tf.nn.rnn_cell.MultiRNNCell([cell_1, cell_2])

We can also use a wrapper to apply dropout to the inputs and outputs of an LSTM
with specified input and output keep probabilities:

cell_1 = tf.nn.rnn_cell.BasicLSTMCell(10)
tf.nn.rnn_cell.DropoutWrapper(cell_1, input_keep_prob=1.0,
 output_keep_prob=1.0,
 seed=None)

Finally, we complete the RNN by wrapping everything into the appropriate Tensor‐
Flow RNN primitive:

outputs, state = tf.nn.dynamic_rnn(cell, inputs,
 sequence_length=None,
 initial_state=None,
 dtype=None,
 parallel_iterations=None,
 swap_memory=False,
 time_major=False,
 scope=None)

184 | Chapter 7: Models for Sequence Analysis

The cell is the RNNCell object we’ve compiled thus far. If time_major ==

False (which is the default setting), inputs must be a tensor of the shape
[batch_size, max_time, ...]. Otherwise if time_major == True, we must
have inputs with the shape: [max_time, batch_size, ...]. We refer the curious
reader to the TensorFlow documentation for elucidation of the other configuration
parameters.

The result of calling tf.nn.dynamic_rnn is a tensor representing the outputs of the
RNN along with the final state vector. If time_major == False, then outputs will be
of shape [batch_size, max_time, cell.output_size]. Otherwise, outputs will
have shape [max_time, batch_size, cell.output_size]. We can expect state to
be of size [batch_size, cell.state_size].

Now that we have an understanding of the tools at our disposal in constructing recur‐
rent neural networks in TensorFlow, we’ll build our first LSTM in the next section,
focused on the task of sentiment analysis.

Implementing a Sentiment Analysis Model
In this section, we attempt to analyze the sentiment of movie reviews taken from the
Large Movie Review Dataset. This dataset consists of 50,000 reviews from IMDB,
each of which labeled as having positive or negative sentiment. We use a simple
LSTM model leveraging dropout to learn how to classify the sentiment of movie
reviews. The LSTM model will consume the movie review one word at a time. Once it
has consumed the entire review, we’ll use its output as the basis of a binary classifica‐
tion to map the sentiment to be “positive” or “negative.” Let’s start off by loading the
dataset. To do this, we’ll utilize the helper library tflearn. We can install tflearn by
running the following command:

$ pip install tflearn

Once we’ve installed the package, we can download the dataset, prune the vocabulary
to only include the 30,000 most common words, pad each input sequence up to a
length 500 words, and process the labels:

from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb

train, test, _ = imdb.load_data(path='data/imdb.pkl',
 n_words=30000,
 valid_portion=0.1)
trainX, trainY = train
testX, testY = test

trainX = pad_sequences(trainX, maxlen=500, value=0.)
testX = pad_sequences(testX, maxlen=500, value=0.)

Implementing a Sentiment Analysis Model | 185

trainY = to_categorical(trainY, nb_classes=2)
testY = to_categorical(testY, nb_classes=2)

The inputs here are now 500-dimensional vectors. Each vector corresponds to a
movie review where the ith component of the vector corresponds to the index of the
ith word of the review in our global dictionary of 30,000 words. To complete the data
preparation, we create a special Python class designed to serve minibatches of a
desired size from the underlying dataset:

class IMDBDataset():
 def __init__(self, X, Y):
 self.num_examples = len(X)
 self.inputs = X
 self.tags = Y
 self.ptr = 0

 def minibatch(self, size):
 ret = None
 if self.ptr + size < len(self.inputs):
 ret = self.inputs[self.ptr:self.ptr+size],
 self.tags[self.ptr:self.ptr+size]
 else:
 ret = np.concatenate((self.inputs[self.ptr:],
 self.inputs[:size-len(
 self.inputs[self.ptr:])])),
 np.concatenate((self.tags[self.ptr:],
 self.tags[:size-len(
 self.tags[self.ptr:])]))
 self.ptr = (self.ptr + size) % len(self.inputs)

 return ret

train = IMDBDataset(trainX, trainY)
val = IMDBDataset(testX, testY)

We use the IMDBDataset Python class to serve both the training and validation sets
we’ll use while training our sentiment analysis model.

Now that the data is ready to go, we’ll begin to construct the sentiment analysis
model, step by step. First, we’ll want to map each word in the input review to a word
vector. To do this, we’ll utilize an embedding layer, which, as you may recall from the
last chapter, is a simple lookup table that stores an embedding vector that corre‐
sponds to each word. Unlike in previous examples, where we treated the learning of
the word embeddings as a separate problem (i.e., by building a Skip-Gram model),
we’ll learn the word embeddings jointly with the sentiment analysis problem by treat‐
ing the embedding matrix as a matrix of parameters in the full problem. We accom‐
plish this by using the TensorFlow primitives for managing embeddings (remember
that input represents one full minibatch at a time, not just one movie review vector):

186 | Chapter 7: Models for Sequence Analysis

def embedding_layer(input, weight_shape):
 weight_init = tf.random_normal_initializer(stddev=(
 1.0/weight_shape[0])**0.5)
 E = tf.get_variable("E", weight_shape,
 initializer=weight_init)
 incoming = tf.cast(input, tf.int32)
 embeddings = tf.nn.embedding_lookup(E, incoming)
 return embeddings

We then take the result of the embedding layer and build an LSTM with dropout
using the primitives we saw in the previous section. We do some extra work to pull
out the last output emitted by the LSTM using the tf.slice and tf.squeeze opera‐
tors, which find the exact slice that contains the last output of the LSTM and then
eliminates the unnecessary dimension. The change in dimensions is as follows:
[batch_size, max_time, cell.output_size] to [batch_size, 1, cell.out

put_size] to [batch_size, cell.output_size].

The implementation of the LSTM can be achieved as follows:

def lstm(input, hidden_dim, keep_prob, phase_train):
 lstm = tf.nn.rnn_cell.BasicLSTMCell(hidden_dim)
 dropout_lstm = tf.nn.rnn_cell.DropoutWrapper(lstm,
 input_keep_prob=keep_prob,
 output_keep_prob=keep_prob)
 # stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(
 [dropout_lstm] * 2,
 state_is_tuple=True)
 lstm_outputs, state = tf.nn.dynamic_rnn(dropout_lstm,
 input, dtype=tf.float32)
 return tf.squeeze(tf.slice(lstm_outputs,
 [0, tf.shape(
 lstm_outputs)[1]-1, 0],
 [tf.shape(lstm_outputs)[0],
 1, tf.shape(
 lstm_outputs)[2]])

We top it all off using a batch-normalized hidden layer, identical to the ones we’ve
used time and time again in previous examples. Stringing all of these components
together, we can build the inference graph:

def inference(input, phase_train):
 embedding = embedding_layer(input, [30000, 512])
 lstm_output = lstm(embedding, 512, 0.5, phase_train)
 output = layer(lstm_output, [512, 2], [2], phase_train)
 return output

We omit the other boilerplate involved in setting up summary statistics, saving inter‐
mediate snapshots, and creating the session because it’s identical to the other models
we have built in this book; we refer the reader to the source code in the GitHub
repository. We can then run and visualize the performance of our model using Ten‐
sorBoard (Figure 7-23).

Implementing a Sentiment Analysis Model | 187

Figure 7-23. Training cost, validation cost, and accuracy of our movie review sentiment
model

At the beginning of training, the model struggles slightly with stability, and toward
the end of the training, the model clearly starts to overfit as training cost and valida‐
tion cost significantly diverge. At its optimal performance, however, the model per‐
forms rather effectively and generalizes to approximately 86% accuracy on the test
set. Congratulations! You’ve built your first recurrent neural network.

188 | Chapter 7: Models for Sequence Analysis

Solving seq2seq Tasks with Recurrent Neural Networks
Now that we’ve built a strong understanding of recurrent neural networks, we’re
ready to revisit the problem of seq2seq. We started off this chapter with an example of
a seq2seq task: mapping a sequence of words in a sentence to a sequence of POS tags.
Tackling this problem was tractable because we didn’t need to take into account long-
term dependencies to generate the appropriate tags. But there are several seq2seq
problems, such as translating between languages or creating a summary for a video,
where long-term dependencies are crucial to the to the success of the model. This is
where RNNs come in.

The RNN approach to seq2seq looks a lot like the autoencoder we discussed in the
previous chapter. The seq2seq model is composed of two separate networks. The first
network is known as the encoder network. The encoder network is a recurrent net‐
work (usually one that uses LSTM units) that consumes the entire input
sequence. The goal of the encoder network is to generate a condensed understanding
of the input and summarize it into a singular thought represented by the final state of
the encoder network. Then we use a decoder network, whose starting state is initial‐
ized with the final state of the encoder network, to produce the target output
sequence token by token. At each step, the decoder network consumes its own output
from the previous time step as the current time step’s input. The entire process is
visualized in Figure 7-24.

Figure 7-24. Illustration of how we use an encoder/decoder recurrent network schema to
tackle seq2seq problems

In this this setup, we are attempting to translate an American sentence into French.
We tokenize the input sentence and use an embedding (similarly to our approach in
the sentiment analysis model we built in the previous section), one word at a time as
an input to the encoder network. At the end of the sentence, we use a special “end of
sentence” (EOS) token to indicate the end of the input sequence to the encoder net‐

Solving seq2seq Tasks with Recurrent Neural Networks | 189

11 Kiros, Ryan, et al. “Skip-Thought Vectors.” Advances in neural information processing systems. 2015.

work. Then we take the hidden state of the encoder network and use that as the initi‐
alization of the decoder network. The first input to the decoder network is the EOS
token, and the output is interpreted as the first word of the predicted French transla‐
tion. From that point onward, we use the output of the decoder network as the input
to itself at the next time step. We continue until the decoder network emits an EOS
token as its output, at which point we know that the network has completed produc‐
ing the translation of the original English sentence. We’ll dissect practical, open
source implementation of this network (with a couple of enhancements and tricks to
improve accuracy) later in this chapter.

The seq2seq RNN architecture can also be reappropriated for the purpose of learning
good embeddings of sequences. For example, Kiros et al. in 2015 invented the notion
of a skip-thought vector,11 which borrowed architectural characteristics from both the
autoencoder framework and Skip-Gram model discussed in Chapter 6. The skip-
thought vector was generated by dividing up a passage into a set of triplets consisting
of consecutive sentences. The authors utilized a single encoder network and two
decoder networks, as shown in Figure 7-25.

Figure 7-25. The skip-thought seq2seq architecture to generate embedding representa‐
tions of entire sentences

The encoder network consumed the sentence for which we wanted to generate a con‐
densed representation (which was stored in the final hidden state of the encoder net‐
work). Then came the decoding step. The first of the decoder networks would take
that representation as the initialization of its own hidden state and attempt to recon‐
struct the sentence that appeared prior to the input sentence. The second decoder
network would instead attempt the sentence that appeared immediately after the
input sentence. The full system was trained end to end on these triplets, and once
completed, could be utilized to generate seemingly cohesive passages of text in addi‐

190 | Chapter 7: Models for Sequence Analysis

tion to improve performance on key sentence-level classification tasks. Here’s an
example of story generation, excerpted from the original paper:

she grabbed my hand .
"come on . "
she fluttered her back in the air .
"i think we're at your place . I ca n't come get you . "
he locked himself back up
" no . she will . "
kyrian shook his head

Now that we’ve developed an understanding of how to leverage recurrent neural net‐
works to tackle seq2seq problems, we’re almost ready to try to build our own. Before
we get there, however, we’ve got one more major challenge to tackle, and we’ll address
it head-on in the next section when we discuss the concept of attentions in seq2seq
RNNs.

Augmenting Recurrent Networks with Attention
Let’s think harder about the translation problem. If you’ve ever attempted to learn a
foreign language, you’ll know that there are several things that are helpful when try‐
ing to complete a translation. First it’s helpful to read the full sentence to understand
the concept you would like to convey. Then you write out the translation one word at
a time, each word following logically from the word you wrote previously. But one
important aspect of translation is that as you compose the new sentence, you often
refer back to the original text, focusing on specific parts that are relevant to your cur‐
rent translation. At each step, you are paying attention to the most relevant parts of
the original “input” so you can make the best decision about the next word to put on
the page.

Let’s think back to our approach to seq2seq. By consuming the full input and summa‐
rizing it into a “thought” inside its hidden state, the encoder network effectively ach‐
ieves the first part of the translation process. By using the previous output as its
current input, the decoder network achieves the second part of the translation pro‐
cess. This phenomenon of attention has yet to be captured by our approach to
seq2seq, and this is the final building block we’ll need to engineer.

Currently, the sole input to the decoder network at a given time step t is its output at
time step t − 1. One way to give the decoder network some vision into the original
sentence is by giving the decoder access to all of the outputs from the encoder net‐
work (which we previously had completely ignored). These outputs are interesting to
us because they represent how the encoder network’s internal state evolves after see‐
ing each new token. A proposed implementation of this strategy is shown in
Figure 7-26.

Augmenting Recurrent Networks with Attention | 191

12 Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation by Jointly Learning to
Align and Translate.” arXiv preprint arXiv:1409.0473 (2014).

Figure 7-26. An attempt at engineering attentional abilities in a seq2seq architecture.
This attempt falls short because it fails to dynamically select the most relevant parts of
the input to focus on.

This approach has a critical flaw, however. The problem here is that at every time
step, the decoder considers all of the outputs of the encoder network in the exact
same way. However, this is clearly not the case for a human during the translation
process. We focus on different aspects of the original text when working on different
parts of the translation. The key realization here is that it’s not enough to merely give
the decoder access to all the outputs. Instead, we must engineer a mechanism by
which the decoder network can dynamically pay attention to a specific subset of the
encoder’s outputs.

We can fix this problem by changing the inputs to the concatenation operation, using
the proposal in Bahdanau et al. 2015 as inspiration.12 Instead of directly using the raw
outputs from the encoder network, we perform a weighting operation on the encod‐
er’s outputs. We leverage the decoder network’s state at time t − 1 as the basis for the
weighting operation.

192 | Chapter 7: Models for Sequence Analysis

Figure 7-27. A modification to our original proposal that enables a dynamic attentional
mechanism based on the hidden state of the decoder network in the previous time step

The weighting operation is illustrated in Figure 7-27. First we create a scalar (a single
number, not a tensor) relevance score for each of the encoder’s outputs. The score is
generated by computing the dot product between each encoder output and the
decoder’s state at time t − 1. We then normalize these scores using a softmax opera‐
tion. Finally, we use these normalized scores to individually scale the encoder’s out‐
puts before plugging them into the concatenation operation. The key here is that the
relative scores computed for each encoder output signify how important that particu‐
lar encoder output is to the decision for the decoder at time step t. In fact, as we’ll see
later, we can visualize which parts of the input are most relevant to the translation at
each time step by inspecting the output of the softmax!

Armed with this strategy for engineering attention into seq2seq architectures, we’re
finally ready to get our hands dirty with an RNN model for translating English sen‐
tences into French. But before we jump in, it’s worth noting that attentions are
incredibly applicable in problems that extend beyond language translation. Atten‐
tions can be important in speech-to-text problems, where the algorithm learns to
dynamically pay attention to corresponding parts of the audio while transcribing the
audio into text. Similarly, attentions can be used to improve image captioning algo‐
rithms by helping the captioning algorithm focus on specific parts of the input image
while writing out the caption. Anytime there are particular parts of the input that are

Augmenting Recurrent Networks with Attention | 193

13 This code can be found at: https://github.com/tensorflow/tensorflow/tree/r0.7/tensorflow/models/rnn/translate.

highly correlated to correctly producing corresponding segments of the output, atten‐
tions can dramatically improve performance.

Dissecting a Neural Translation Network
State-of-the-art neural translation networks use a number of different techniques and
advancements that build on the basic seq2seq encoder-decoder architecture. Atten‐
tion, as detailed in the previous section, is an important and critical architectural
improvement. In this section, we will dissect a fully implemented neural machine
translation system, complete with the data processing steps, building the model,
training it, and eventually using it as a translation system to convert English phrases
to French phrases! We’ll pursue this exploration by working with a simplified version
of the official TensorFlow machine translation tutorial code.13

The pipeline used in training and eventually using a neural machine translation sys‐
tem is very similar to that of most machine learning pipelines: gather data, prepare
the data, construct the model, train the model, evaluate the model’s progress, and
eventually use the trained model to predict or infer something useful. We review each
of these steps here.

We first gather the data from the WMT’15 repository, which houses large corpora
used in training translation systems. For our use case, we’ll be using the English-to-
French data. Note that if we want to be able to translate to or from different lan‐
guages, we would have to train a model from scratch with the new data. We then
preprocess our data into a format that is easily usable by our models during training
and inference time. This will involve some amount of cleaning and tokenizing the
sentences in each of the English and French phrases. What follows now is a set of
techniques used in preparing the data, and later we will present the implementations
of the techniques.

The first step is to parse sentences and phrases into formats that are more compatible
with the model by tokenization. This is the process by which we discretize a particular
English or French sentence into its constituent tokens. For instance, a simple word-
level tokenizer will consume the sentence “I read.” to produce the array ["I”, “read”,
“."], or it would consume the French sentence “Je lis.” to produce the array ["Je”, “lis”,
“."]. A character-level tokenizer may break the sentence into individual characters or
into pairs of characters like ["I”, " “, “r”, “e”, “a”, “d”, “."] and ["I “, “re”, “ad”, “."], respec‐
tively. One kind of tokenization may work better than the other, and each has its pros
and cons. For instance, a word-level tokenizer will ensure that the model produces
words that are from some dictionary, but the size of the dictionary may be too large
to efficiently choose from during decoding. This is in fact a known issue and some‐

194 | Chapter 7: Models for Sequence Analysis

https://github.com/tensorflow/tensorflow/tree/r0.7/tensorflow/models/rnn/translate

thing that we’ll address in the coming discussions. On the other hand, the decoder
using a character-level tokenization may not produce intelligible outputs, but the
total dictionary that the decoder must choose from is much smaller, as it is simply the
set of all printable ASCII characters. In this tutorial, we use a word-level tokenization,
but we encourage the reader to experiment with different tokenizations to observe
the effects this has. It is worth noting that we must also add a special EOS, or end-of-
sequence character, to the end of all output sequences because we need to provide a
definitive way for the decoder to indicate that it has reached the end of its decoding.
We can’t use regular punctuation because we cannot assume that we are translating
full sentences. Note that we do not need EOS characters in our source sequences
because we are feeding these in pre-formatted and do not need an end-of-sequence
character for ourselves to denote the end of our source sequence.

The next optimization involves further modifying how we represent each source and
target sequence, and we introduce a concept called bucketing. This is a method
employed primarily in sequence-to-sequence tasks, especially machine translation,
that helps the model efficiently handle sentences or phrases of different lengths. We
first describe the naive method of feeding in training data and illustrate the short‐
comings of this approach. Normally, when feeding in encoder and decoder tokens,
the length of the source sequence and the target sequence is not always equal between
pairs of examples. For example, the source sequence may have length X, and the tar‐
get sequence may have length Y. It may seem that we need different seq2seq networks
to accommodate each (X, Y) pair, yet this immediately seems wasteful and inefficient.
Instead, we can do a little better if we pad each sequence up to a certain length, as
shown in Figure 7-28, assuming we use a word-level tokenization and that we’ve
appended EOS tokens to our target sequences.

Figure 7-28. Naive strategy for padding sequences

This step saves us the trouble of having to construct a different seq2seq model for
each pair of source and target lengths. However, this introduces a different issue: if
there were a very long sequence, it would mean that we would have to pad every
other sequence up to that length. This would make a short sequence padded to the
end take as much computational resources as a long one with few PAD tokens, which
is wasteful and could introduce a major performance hit to our model. We could con‐
sider breaking up every sentence in the corpus into phrases such that the length of

Dissecting a Neural Translation Network | 195

each phrase does not exceed a certain maximum limit, but it’s not clear how to break
the corresponding translations. This is where bucketing helps us.

Bucketing is the idea that we can place encoder and decoder pairs into buckets of
similar size, and only pad up to the maximum length of sequences in each respective
bucket. For instance, we can denote a set of buckets, [(5, 10), (10, 15), (20, 25), (30,
40)], where each tuple in the list is the maximum length of the source sequence and
target sequence, respectively. Borrowing the preceding example, we can place the pair
of sequences (["I”, “read”, “."], ["Je”, “lis”, “.”, “EOS"]) in the first bucket, as the source
sequence is smaller than 5 tokens and the target sequence is smaller than 10 tokens.
We would then place the (["See”, “you”, “in”, “a”, “little”, “while"], ["A”, “tout”, “a”,
“l’heure”, “EOS]) in the second bucket, and so on. This technique allows us to com‐
promise between the two extremes, where we only need to pad as much as necessary,
as shown in Figure 7-29.

Figure 7-29. Padding sequences with buckets

Using bucketing shows a considerable speedup during training and test time, and
allows developers and frameworks to write very optimized code to leverage the fact
that any sequence from a bucket will have the same size and pack the data together in
ways that allow even further GPU efficiency.

With the sequences properly padded, we need to add one additional token to the tar‐
get sequences: a GO token. This GO token will signal to the decoder that decoding
needs to begin, at which point it will take over and begin decoding.

The last improvement we make in the data preparation side is that we reverse the
source sequences. Researchers found that doing so improved performance, and this
has become a standard trick to try when training neural machine translation models.
This is a bit of an engineering hack, but consider the fact that our fixed-size neural
state can only hold so much information, and information encoded while processing
the beginning of the sentence may be overwritten while encoding later parts of the
sentence. In many language pairs, the beginning of sentences is harder to translate
than the end of sentences, so this hack of reversing the sentence improves translation
accuracy by giving the beginning of the sentence the last say on what final state is
encoded. With these ideas in place, the final sequences look as they do in Figure 7-30.

196 | Chapter 7: Models for Sequence Analysis

Figure 7-30. Final padding scheme with buckets, reversing the inputs, and adding the
GO token

With these techniques described, we can now detail the implementation. The ideas
are in a method called get_batch() in the code. This method collects a single batch
of training data, given the bucket_id, which is chosen from the training loop, and the
data. The result of this method includes the tokens in the source and target sequences
and applies all of the techniques we just discussed, including the padding with buck‐
ets and reversing the inputs:

def get_batch(self, data, bucket_id):
 encoder_size, decoder_size = self.buckets[bucket_id]
 encoder_inputs, decoder_inputs = [], []

We first declare placeholders for each of the inputs that the encoder and decoder con‐
sume:

 for _ in xrange(self.batch_size):
 encoder_input, decoder_input = random.choice(data[
 bucket_id])

 # Encoder inputs are padded and then reversed.
 encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(
 encoder_input))
 encoder_inputs.append(list(reversed(encoder_input +
 encoder_pad)))

 # Decoder inputs get an extra "GO" symbol,
 # and are then padded.
 decoder_pad_size = decoder_size - len(decoder_input) - 1
 decoder_inputs.append([data_utils.GO_ID] + decoder_input +
 [data_utils.PAD_ID] *
 decoder_pad_size)

Given the size of the batch, we gather that many encoder and decoder sequences:

 # Now we create batch-major vectors from the data selected
 # above.
 batch_encoder_inputs, batch_decoder_inputs, batch_weights =
 [], [], []

 # Batch encoder inputs are just re-indexed encoder_inputs.

Dissecting a Neural Translation Network | 197

 for length_idx in xrange(encoder_size):
 batch_encoder_inputs.append(
 np.array([encoder_inputs[batch_idx][length_idx]
 for batch_idx in xrange(self.batch_size)],
 dtype=np.int32))

 # Batch decoder inputs are re-indexed decoder_inputs,
 # we create weights.
 for length_idx in xrange(decoder_size):
 batch_decoder_inputs.append(
 np.array([decoder_inputs[batch_idx][length_idx]
 for batch_idx in xrange(self.batch_size)],
 dtype=np.int32))

With additional bookkeeping, we make sure that vectors are batch-major, meaning
that the batch size is the first dimension in the tensor, and we resize the previously
defined placeholders into the correct shape:

 # Create target_weights to be 0 for targets that
 # are padding.
 batch_weight = np.ones(self.batch_size, dtype=np.float32)
 for batch_idx in xrange(self.batch_size):
 # We set weight to 0 if the corresponding target is
 # a PAD symbol.
 # The corresponding target is decoder_input shifted
 # by 1 forward.
 if length_idx < decoder_size - 1:
 target = decoder_inputs[batch_idx][length_idx + 1]
 if length_idx == decoder_size - 1 or
 target == data_utils.PAD_ID:
 batch_weight[batch_idx] = 0.0
 batch_weights.append(batch_weight)
 return batch_encoder_inputs, batch_decoder_inputs,
 batch_weights

Finally, we set the target weights of zero to those tokens that are simply the PAD
token.

With the data preparation now done, we are ready to begin building and training our
model! We first detail the code used during training and test time, and abstract the
model away for now. When doing so, we can make sure we understand the high-level
pipeline, and we will then study the seq2seq model in more depth. As always, the first
step during training is to load our data:

 def train():
 """Train a en->fr translation model using WMT data."""
 # Prepare WMT data.
 print("Preparing WMT data in %s" % FLAGS.data_dir)
 en_train, fr_train, en_dev, fr_dev, _, _ =
 data_utils.prepare_wmt_data(
 FLAGS.data_dir, FLAGS.en_vocab_size, FLAGS.fr_vocab_size)

198 | Chapter 7: Models for Sequence Analysis

After instantiating our TensorFlow session, we first create our model. Note that this
method is flexible to a number of different architectures as long as they respect the
input and output requirements detailed by the train() method:

 with tf.Session() as sess:
 # Create model.
 print("Creating %d layers of %d units." % (FLAGS.num_layers,
 FLAGS.size))
 model = create_model(sess, False)

We now process the data using various utility functions into buckets that are later
used by get_batch() to fetch the data. We also create an array of real numbers from 0
to 1 that roughly dictate the likelihood of selecting a bucket, normalized by the size of
buckets. When get_batch() selects buckets, it will do so respecting these probabili‐
ties:

 # Read data into buckets and compute their sizes.
 print ("Reading development and training data (limit: %d)."
 % FLAGS.max_train_data_size)
 dev_set = read_data(en_dev, fr_dev)
 train_set = read_data(en_train, fr_train,
 FLAGS.max_train_data_size)
 train_bucket_sizes = [len(train_set[b]) for b in xrange(
 len(_buckets))]
 train_total_size = float(sum(train_bucket_sizes))

 # A bucket scale is a list of increasing numbers
 # from 0 to 1 that we'll use to select a bucket.
 # Length of [scale[i], scale[i+1]] is proportional to
 # the size if i-th training bucket, as used later.
 train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) /
 train_total_size
 for i in xrange(len(
 train_bucket_sizes))]

With data ready, we now enter our main training loop. We initialize various loop
variables, like current_step and previous_losses to 0 or empty. It is important to
note that each cycle in the while loop denotes one epoch, which is the terminology
for looping through one batch of training data. Therefore, per epoch, we select a
bucket_id, get a batch using get_batch, and then step forward in our model with the
data:

 # This is the training loop.
 step_time, loss = 0.0, 0.0
 current_step = 0
 previous_losses = []
 while True:
 # Choose a bucket according to data distribution.
 # We pick a random number
 # in [0, 1] and use the corresponding interval
 # in train_buckets_scale.

Dissecting a Neural Translation Network | 199

 random_number_01 = np.random.random_sample()
 bucket_id = min([i for i in xrange(len(
 train_buckets_scale))
 if train_buckets_scale[i] >
 random_number_01])

 # Get a batch and make a step.
 start_time = time.time()
 encoder_inputs, decoder_inputs, target_weights =
 model.get_batch(
 train_set, bucket_id)
 _, step_loss, _ = model.step(sess, encoder_inputs,
 decoder_inputs,
 target_weights, bucket_id,
 False)

We measure the loss incurred during prediction time as well as keep track of other
running metrics:

 step_time += (time.time() - start_time) /
 FLAGS.steps_per_checkpoint
 loss += step_loss / FLAGS.steps_per_checkpoint
 current_step += 1

Lastly, every so often, as dictated by a global variable, we will carry out a number of
tasks. First, we print statistics for the previous batch, such as the loss, the learning
rate, and the perplexity. If we find that the loss is not decreasing, it is possible that the
model has fallen into a local optima. To assist the model in escaping this, we anneal
the learning rate so that it won’t make large leaps in any particular direction. At this
point, we also save a copy of the model and its weights and activations to disk:

 # Once in a while, we save checkpoint, print statistics,
 # and run evals.
 if current_step % FLAGS.steps_per_checkpoint == 0:
 # Print statistics for the previous epoch.
 perplexity = math.exp(float(loss)) if loss <
 300 else float("inf")
 print ("global step %d learning rate %.4f
 step-time %.2f perplexity "
 "%.2f" % (model.global_step.eval(),
 model.learning_rate.eval(),
 step_time, perplexity))
 # Decrease learning rate if no improvement was seen over
 # last 3 times.
 if len(previous_losses) > 2 and loss > max(
 previous_losses[-3:]):
 sess.run(model.learning_rate_decay_op)
 previous_losses.append(loss)
 # Save checkpoint and zero timer and loss.
 checkpoint_path = os.path.join(FLAGS.train_dir,
 "translate.ckpt")
 model.saver.save(sess, checkpoint_path,

200 | Chapter 7: Models for Sequence Analysis

 global_step=model.global_step)
 step_time, loss = 0.0, 0.0

Finally, we will measure the model’s performance on a held-out development set. By
doing so, we can measure the generalization of the model and see if is improving, and
if so, at what rate. We again fetch data using get_batch, but this time only use
bucket_id from the held-out set. We again step through the model, but this time
without updating any of the weights because the last argument in the step() method
is True as opposed to False during the main training loop; we will discuss the seman‐
tics of step() later. We measure this evaluation loss and display it to the user:

 # Run evals on development set and print
 # their perplexity.
 for bucket_id in xrange(len(_buckets)):
 if len(dev_set[bucket_id]) == 0:
 print(" eval: empty bucket %d" % (bucket_id))
 continue
 encoder_inputs, decoder_inputs,
 target_weights = model.get_batch(
 dev_set, bucket_id)
 # attns, _, eval_loss, _ = model.step(sess,
 encoder_inputs, decoder_inputs,
 _, eval_loss, _ = model.step(sess, encoder_inputs,
 decoder_inputs,
 target_weights,
 bucket_id,
 True)
 eval_ppx = math.exp(float(eval_loss)) if eval_loss <
 300 else float(
 "inf")
 print(" eval: bucket %d perplexity %.2f" % (
 bucket_id, eval_ppx))
 sys.stdout.flush()

We also have another major use case for our model: single-use prediction. In other
words, we want to be able to use our trained model to translate new sentences that
we, or other users, provide. To do so, we use the decode() method. This method will
essentially carry out the same functions as was done in the evaluation loop for the
held-out development set. However, the largest difference is that during training and
evaluation, we never needed the model to translate the output embeddings to output
tokens that are human-readable, which is something we do here. We detail this
method now.

Because this is a separate mode of computation, we need to again instantiate the Ten‐
sorFlow session and create the model, or load a saved model from a previous check‐
point step:

 def decode():
 with tf.Session() as sess:

Dissecting a Neural Translation Network | 201

 # Create model and load parameters.
 model = create_model(sess, True)

We set the batch size to 1, as we are not processing any new sentences in parallel, and
only load the input and output vocabularies, as opposed to the data itself:

 model.batch_size = 1 # We decode one sentence at a time.
 # Load vocabularies.
 en_vocab_path = os.path.join(FLAGS.data_dir,
 "vocab%d.en" %
 FLAGS.en_vocab_size)
 fr_vocab_path = os.path.join(FLAGS.data_dir,
 "vocab%d.fr" %
 FLAGS.fr_vocab_size)
 en_vocab, _ = data_utils.initialize_vocabulary(
 en_vocab_path)
 _, rev_fr_vocab = data_utils.initialize_vocabulary(
 fr_vocab_path)

We set the input to standard input so that the user can be prompted for a sentence:

 # Decode from standard input.
 sys.stdout.write("> ")
 sys.stdout.flush()
 sentence = sys.stdin.readline()

While the sentence provided is nonempty, it is tokenized and truncated if it exceeds a
certain maximum length:

 while sentence:
 # Get token-ids for the input sentence.
 token_ids = data_utils.sentence_to_token_ids(
 tf.compat.as_bytes(sentence), en_vocab)
 # Which bucket does it belong to?
 bucket_id = len(_buckets) - 1
 for i, bucket in enumerate(_buckets):
 if bucket[0] >= len(token_ids):
 bucket_id = i
 break
 else:
 logging.warning("Sentence truncated: %s", sentence)

While we don’t fetch any data, get_batch() will now format the data into the right
shapes and prepare it for use in step():

 # Get a 1-element batch to feed the sentence to
 # the model.
 encoder_inputs, decoder_inputs, target_weights =
 model.get_batch(
 {bucket_id: [(token_ids, [])]}, bucket_id)

We step through the model, and this time, we want the output_logits, or the unnor‐
malized log-probabilities of the output tokens, instead of the loss. We decode this

202 | Chapter 7: Models for Sequence Analysis

with an output vocabulary and truncate the decoding at the first EOS token observed.
We then print this French sentence or phrase to the user and await the next sentence:

 # Get output logits for the sentence.
 _, _, output_logits = model.step(sess, encoder_inputs,
 decoder_inputs,
 target_weights,
 bucket_id, True)
 # This is a greedy decoder - outputs are just argmaxes
 # of output_logits.
 outputs = [int(np.argmax(logit, axis=1))
 for logit in output_logits]
 # If there is an EOS symbol in outputs, cut them
 # at that point.
 if data_utils.EOS_ID in outputs:
 outputs = outputs[:outputs.index(data_utils.EOS_ID)]
 # Print out French sentence corresponding to outputs.
 print(" ".join([tf.compat.as_str(rev_fr_vocab[output])
 for output in outputs]))
 print("> ", end="")
 sys.stdout.flush()
 sentence = sys.stdin.readline()

This concludes the high-level details of training and using the models. We have
largely abstracted away the fine details of the model itself, and for some users, this
may be sufficient. Finally, we must discuss the full details of the step() function. This
function is responsible for estimating the model’s objective function, updating the
weights appropriately, and setting up the computation graph for the model. We start
with the former.

The step() function consumes a number of arguments: the TensorFlow session, the
list of vectors to feed as the encoder inputs, decoder inputs, target weights, the
bucket_id selected during training, and the forward_only boolean flag, which will
dictate whether or not we use gradient-based optimization to update the weights or to
freeze them. Note that swapping this last flag from False to True is what allowed us
to decode an arbitrary sentence and evaluate performance on a held-out set:

def step(self, session, encoder_inputs, decoder_inputs,
 target_weights, bucket_id, forward_only):

After some defensive checks to ensure that the vectors all have compatible sizes, we
populate our input and output feeds. The input feed contains all the information ini‐
tially passed to the step() function, which is all information needed to compute the
overall loss per example:

Dissecting a Neural Translation Network | 203

 # Check if the sizes match.
 encoder_size, decoder_size = self.buckets[bucket_id]
 if len(encoder_inputs) != encoder_size:
 raise ValueError("Encoder length must be equal to the one
 in bucket,"
 " %d != %d." % (len(
 encoder_inputs), encoder_size))
 if len(decoder_inputs) != decoder_size:
 raise ValueError("Decoder length must be equal to the one
 in bucket,"
 " %d != %d." % (len(decoder_inputs),
 decoder_size))
 if len(target_weights) != decoder_size:
 raise ValueError("Weights length must be equal to the one
 in bucket,"
 " %d != %d." % (len(target_weights),
 decoder_size))

 # Input feed: encoder inputs, decoder inputs, target_weights,
 # as provided.
 input_feed = {}
 for l in xrange(encoder_size):
 input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
 for l in xrange(decoder_size):
 input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
 input_feed[self.target_weights[l].name] = target_weights[l]

 # Since our targets are decoder inputs shifted by one,
 # we need one more.
 last_target = self.decoder_inputs[decoder_size].name
 input_feed[last_target] = np.zeros([self.batch_size],
 dtype=np.int32)

The output feed, if a loss is computed and needs to be backpropagated through the
network, contains the update operation that performs the stochastic gradient descent
and computes the gradient norm and loss for the batch:

 # Output feed: depends on whether we do a backward step or
 # not.
 if not forward_only:
 output_feed = [self.updates[bucket_id], # Update Op that
 # does SGD.
 self.gradient_norms[bucket_id], # Gradient
 # norm.
 self.losses[bucket_id]] # Loss for this
 # batch.
 else:
 output_feed = [self.losses[bucket_id]] # Loss for this
 # batch.
 for l in xrange(decoder_size): # Output logits.
 output_feed.append(self.outputs[bucket_id][l])

204 | Chapter 7: Models for Sequence Analysis

These two feeds are passed to session.run(). Depending on the forward_only flag,
either the gradient norm and loss are returned for maintaining statistics, or the out‐
puts are returned for decoding purposes:

 outputs = session.run(output_feed, input_feed)
 if not forward_only:
 return outputs[1], outputs[2], None #, attns
 # Gradient norm, loss, no outputs.
 else:
 return None, outputs[0], outputs[1:] #, attns
 # No gradient norm, loss, outputs.

Now, we can study the model itself. The constructor for the model sets up the compu‐
tation graph using high-level constructs created. We first review the create_model()
method briefly, which calls this constructor, and then discuss the details of this con‐
structor.

The create_model() method itself is fairly straightforward: it uses a number of user-
defined or default flags, such as the sizes of the English and French vocabularies and
batch size, to create the model by using the constructor seq2seq_model.Seq2SeqMo
del. One particularly interesting flag is the use_fp16 flag. With this, a lower precision
is used as the type in the underlying numpy arrays; this results in faster performance
at the cost of some amount of precision. However, it’s often the case that 16-bit repre‐
sentations are sufficient for representing losses and gradient updates and often per‐
form close to the level of using 32-bit representations. Model creation can be
achieved using the following code:

 def create_model(session, forward_only):
 """Create translation model and initialize or
 load parameters in session."""
 dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
 model = seq2seq_model.Seq2SeqModel(
 FLAGS.en_vocab_size,
 FLAGS.fr_vocab_size,
 _buckets,
 FLAGS.size,
 FLAGS.num_layers,
 FLAGS.max_gradient_norm,
 FLAGS.batch_size,
 FLAGS.learning_rate,
 FLAGS.learning_rate_decay_factor,
 forward_only=forward_only,
 dtype=dtype)

Before returning the model, a check is done to see if there are any previously check‐
pointed models from earlier training runs. If so, this model and its parameters are
read into the model variable and used. This allows us to stop training at a checkpoint
and later resume it without training from scratch. Otherwise, the fresh model created
is returned as the main object:

Dissecting a Neural Translation Network | 205

 ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
 if ckpt and tf.train.checkpoint_exists(
 ckpt.model_checkpoint_path):
 print("Reading model parameters from %s"
 % ckpt.model_checkpoint_path)
 model.saver.restore(session, ckpt.model_checkpoint_path)
 else:
 print("Created model with fresh parameters.")
 session.run(tf.global_variables_initializer())
 return model

We now review the constructor seq2seq_model.Seq2SeqModel. This constructor cre‐
ates the entire computation graph and will occasionally call certain lower-level con‐
structs. Before we jump to those details, we continue in our top-down investigation of
the code and sketch the details of the overarching computation graph.

The same arguments passed to create_model() are passed to this constructor, and a
few class-level fields are created:

class Seq2SeqModel(object):
 def __init__(self,
 source_vocab_size,
 target_vocab_size,
 buckets,
 size,
 num_layers,
 max_gradient_norm,
 batch_size,
 learning_rate,
 learning_rate_decay_factor,
 use_lstm=False,
 num_samples=512,
 forward_only=False,
 dtype=tf.float32):
 self.source_vocab_size = source_vocab_size
 self.target_vocab_size = target_vocab_size
 self.buckets = buckets
 self.batch_size = batch_size
 self.learning_rate = tf.Variable(
 float(learning_rate), trainable=False, dtype=dtype)
 self.learning_rate_decay_op = self.learning_rate.assign(
 self.learning_rate * learning_rate_decay_factor)
 self.global_step = tf.Variable(0, trainable=False)

The next part creates the sampled softmax and the output projection. This is an
improvement over basic seq2seq models in that they allow for efficient decoding over
large output vocabularies and project the output logits to the correct space:

206 | Chapter 7: Models for Sequence Analysis

 # If we use sampled softmax, we need an output projection.
 output_projection = None
 softmax_loss_function = None
 # Sampled softmax only makes sense if we sample less than
 # vocabulary size.
 if num_samples > 0 and num_samples <
 self.target_vocab_size:
 w_t = tf.get_variable("proj_w", [self.target_vocab_size,
 size], dtype=dtype)
 w = tf.transpose(w_t)
 b = tf.get_variable("proj_b", [self.target_vocab_size],
 dtype=dtype)
 output_projection = (w, b)

 def sampled_loss(inputs, labels):
 labels = tf.reshape(labels, [-1, 1])
 # We need to compute the sampled_softmax_loss using
 # 32bit floats to avoid numerical instabilities.
 local_w_t = tf.cast(w_t, tf.float32)
 local_b = tf.cast(b, tf.float32)
 local_inputs = tf.cast(inputs, tf.float32)
 return tf.cast(
 tf.nn.sampled_softmax_loss(local_w_t, local_b,
 local_inputs, labels,
 num_samples,
 self.target_vocab_size),
 dtype)
 softmax_loss_function = sampled_loss

Based on the flags, we choose the underlying RNN cell, whether it’s a GRU cell, an
LSTM cell, or a multilayer LSTM cell. Production systems will rarely use single-layer
LSTM cells, but they are much faster to train and may make the debugging cycle
faster:

 # Create the internal multi-layer cell for our RNN.
 single_cell = tf.nn.rnn_cell.GRUCell(size)
 if use_lstm:
 single_cell = tf.nn.rnn_cell.BasicLSTMCell(size)
 cell = single_cell
 if num_layers > 1:
 cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] *
 num_layers)

The recurrent function seq2seq_f() is defined with seq2seq.embedding_atten
tion_seq2seq(), which we will discuss later:

 # The seq2seq function: we use embedding for the
 # input and attention.
 def seq2seq_f(encoder_inputs, decoder_inputs, do_decode):
 return seq2seq.embedding_attention_seq2seq(
 encoder_inputs,
 decoder_inputs,

Dissecting a Neural Translation Network | 207

 cell,
 num_encoder_symbols=source_vocab_size,
 num_decoder_symbols=target_vocab_size,
 embedding_size=size,
 output_projection=output_projection,
 feed_previous=do_decode,
 dtype=dtype)

We define placeholders for the inputs and targets:

 # Feeds for inputs.
 self.encoder_inputs = []
 self.decoder_inputs = []
 self.target_weights = []
 for i in xrange(buckets[-1][0]): # Last bucket is
 # the biggest one.
 self.encoder_inputs.append(tf.placeholder(tf.int32,
 shape=[None],
 name="encoder{0}".format(i)))
 for i in xrange(buckets[-1][1] + 1):
 self.decoder_inputs.append(tf.placeholder(tf.int32,
 shape=[None],
 name="decoder{0}".format(i)))
 self.target_weights.append(tf.placeholder(dtype,
 shape=[None],
 name="weight{0}".format(i)))

 # Our targets are decoder inputs shifted by one.
 targets = [self.decoder_inputs[i + 1]
 for i in xrange(len(self.decoder_inputs) - 1)]

We now compute the outputs and losses from the function
seq2seq.model_with_buckets. This function simply constructs the seq2seq model to
be compatible with buckets and computes the loss either by averaging over the entire
example sequence or as a weighted cross-entropy loss for a sequence of logits:

 # Training outputs and losses.
 if forward_only:
 self.outputs, self.losses = seq2seq.model_with_buckets(
 self.encoder_inputs, self.decoder_inputs, targets,
 self.target_weights, buckets, lambda x, y:
 seq2seq_f(x, y, True),
 softmax_loss_function=softmax_loss_function)
 # If we use output projection, we need to project outputs
 # for decoding.
 if output_projection is not None:
 for b in xrange(len(buckets)):
 self.outputs[b] = [
 tf.matmul(output, output_projection[0]) +
 output_projection[1]
 for output in self.outputs[b]
]
 else:

208 | Chapter 7: Models for Sequence Analysis

 self.outputs, self.losses = seq2seq.model_with_buckets(
 self.encoder_inputs, self.decoder_inputs, targets,
 self.target_weights, buckets,
 lambda x, y: seq2seq_f(x, y, False),
 softmax_loss_function=softmax_loss_function)

Finally, we update the parameters of the model (because they are trainable variables)
using some form of gradient descent. We use vanilla SGD with gradient clipping, but
we are free to use any optimizer—the results will certainly improve and training may
proceed much faster. Afterward, we save all variables:

 # Gradients and SGD update operation for training the model.
 params = tf.trainable_variables()
 if not forward_only:
 self.gradient_norms = []
 self.updates = []
 opt = tf.train.GradientDescentOptimizer(
 self.learning_rate)
 for b in xrange(len(buckets)):
 gradients = tf.gradients(self.losses[b], params)
 clipped_gradients, norm = tf.clip_by_global_norm(
 gradients,
 max_gradient_norm)
 self.gradient_norms.append(norm)
 self.updates.append(opt.apply_gradients(
 zip(clipped_gradients, params), global_step=
 self.global_step))

 self.saver = tf.train.Saver(tf.all_variables())

With the high-level detail of the computation graph described, we now describe the
last and lowest level of the model: the internals of seq2seq.embedding_atten
tion_seq2seq().

When initializing this model, several flags and arguments are passed as function
arguments. One argument of particular note is feed_previous. When this is true, the
decoder will use the outputted logit at time step T as input to time step T+1. In this
way, it is sequentially decoding the next token based on all tokens thus far. We can
describe this type of decoding, where the next output depends on all previous out‐
puts, as autoregressive decoding:

def embedding_attention_seq2seq(encoder_inputs,
 decoder_inputs,
 cell,
 num_encoder_symbols,
 num_decoder_symbols,
 embedding_size,
 output_projection=None,
 feed_previous=False,
 dtype=None,

Dissecting a Neural Translation Network | 209

 scope=None,
 initial_state_attention=False):

We first create the wrapper for the encoder.

 with variable_scope.variable_scope(
 scope or "embedding_attention_seq2seq", dtype=dtype)
 as scope:
 dtype = scope.dtype
 encoder_cell = rnn_cell.EmbeddingWrapper(
 cell,
 embedding_classes=num_encoder_symbols,
 embedding_size=embedding_size)
 encoder_outputs, encoder_state = rnn.rnn(
 encoder_cell, encoder_inputs, dtype=dtype)

In this following code snippet, we calculate a concatenation of encoder outputs to put
attention on; this is important because it allows the decoder to attend over these states
as a distribution:

 # First calculate a concatenation of encoder outputs
 # to put attention on.
 top_states = [
 array_ops.reshape(e, [-1, 1, cell.output_size]) for e
 in encoder_outputs
]
 attention_states = array_ops.concat(1, top_states)

Now, we create the decoder. If the output_projection flag is not specified, the cell is
wrapped to be one that uses an output projection:

 output_size = None
 if output_projection is None:
 cell = rnn_cell.OutputProjectionWrapper(cell,
 num_decoder_symbols)
 output_size = num_decoder_symbols

From here, we compute the outputs and states using the embedding_atten
tion_decoder:

 if isinstance(feed_previous, bool):
 return embedding_attention_decoder(
 decoder_inputs,
 encoder_state,
 attention_states,
 cell,
 num_decoder_symbols,
 embedding_size,
 output_size=output_size,
 output_projection=output_projection,
 feed_previous=feed_previous,
 initial_state_attention=initial_state_attention)

210 | Chapter 7: Models for Sequence Analysis

The embedding_attention_decoder is a simple improvement over the atten
tion_decoder described in the previous section; essentially, the inputs are projected
to a learned embedding space, which usually improves performance. The loop func‐
tion, which simply describes the dynamics of the recurrent cell with embedding, is
invoked in this step:

def embedding_attention_decoder(decoder_inputs,
 initial_state,
 attention_states,
 cell,
 num_symbols,
 embedding_size,
 output_size=None,
 output_projection=None,
 feed_previous=False,
 update_embedding_for_previous=
 True,
 dtype=None,
 scope=None,
 initial_state_attention=False):

 if output_size is None:
 output_size = cell.output_size
 if output_projection is not None:
 proj_biases = ops.convert_to_tensor(output_projection[1],
 dtype=dtype)
 proj_biases.get_shape().assert_is_compatible_with(
 [num_symbols])

 with variable_scope.variable_scope(
 scope or "embedding_attention_decoder", dtype=dtype)
 as scope:

 embedding = variable_scope.get_variable("embedding",
 [num_symbols,
 embedding_size])
 loop_function = _extract_argmax_and_embed(
 embedding, output_projection,
 update_embedding_for_previous) if feed_previous
 else None
 emb_inp = [
 embedding_ops.embedding_lookup(embedding, i) for i in
 decoder_inputs
]
 return attention_decoder(
 emb_inp,
 initial_state,
 attention_states,
 cell,
 output_size=output_size,

Dissecting a Neural Translation Network | 211

 loop_function=loop_function,
 initial_state_attention=initial_state_attention)

The last step is to study the attention_decoder itself. As the name suggests, the main
feature of this decoder is that it computes a set of attention weights over the hidden
states that the encoder emitted during encoding. After defensive checks, we reshape
the hidden features to the right size:

def attention_decoder(decoder_inputs,
 initial_state,
 attention_states,
 cell,
 output_size=None,
 loop_function=None,
 dtype=None,
 scope=None,
 initial_state_attention=False):
 if not decoder_inputs:
 raise ValueError("Must provide at least 1 input to attention
 decoder.")
 if attention_states.get_shape()[2].value is None:
 raise ValueError("Shape[2] of attention_states must be known:
 %s" %
 attention_states.get_shape())
 if output_size is None:
 output_size = cell.output_size

 with variable_scope.variable_scope(
 scope or "attention_decoder", dtype=dtype) as scope:
 dtype = scope.dtype

 batch_size = array_ops.shape(decoder_inputs[0])[0] # Needed
 # for
 #reshaping.
 attn_length = attention_states.get_shape()[1].value
 if attn_length is None:
 attn_length = array_ops.shape(attention_states)[1]
 attn_size = attention_states.get_shape()[2].value

 # To calculate W1 * h_t we use a 1-by-1 convolution,
 # need to reshape before.
 hidden = array_ops.reshape(attention_states,
 [-1, attn_length, 1, attn_size])
 hidden_features = []
 v = []
 attention_vec_size = attn_size # Size of query vectors
 for attention.
 k = variable_scope.get_variable("AttnW_0",
 [1, 1, attn_size,
 attention_vec_size])
 hidden_features.append(nn_ops.conv2d(hidden, k,
 [1, 1, 1, 1], "SAME"))

212 | Chapter 7: Models for Sequence Analysis

 v.append(
 variable_scope.get_variable("AttnV_0",
 [attention_vec_size]))

 state = initial_state

We now define the attention() method itself, which consumes a query vector and
returns the attention-weighted vector over the hidden states. This method imple‐
ments the same attention as described in the previous section:

 def attention(query):
 """Put attention masks on hidden using hidden_features
 and query."""
 ds = [] # Results of attention reads will be
 # stored here.
 if nest.is_sequence(query): # If the query is a tuple,
 # flatten it.
 query_list = nest.flatten(query)
 for q in query_list: # Check that ndims == 2 if
 # specified.
 ndims = q.get_shape().ndims
 if ndims:
 assert ndims == 2
 query = array_ops.concat(1, query_list)
 # query = array_ops.concat(query_list, 1)
 with variable_scope.variable_scope("Attention_0"):
 y = linear(query, attention_vec_size, True)
 y = array_ops.reshape(y, [-1, 1, 1,
 attention_vec_size])
 # Attention mask is a softmax of v^T * tanh(...).
 s = math_ops.reduce_sum(v[0] * math_ops.tanh(
 hidden_features[0] + y),
 [2, 3])
 a = nn_ops.softmax(s)
 # Now calculate the attention-weighted vector d.
 d = math_ops.reduce_sum(
 array_ops.reshape(a, [-1, attn_length, 1, 1]) *
 hidden, [1, 2])
 ds.append(array_ops.reshape(d, [-1, attn_size]))
 return ds

Using the function, we compute the attention over each of the output states, starting
with the initial state:

 outputs = []
 prev = None
 batch_attn_size = array_ops.stack([batch_size, attn_size])
 attns = [array_ops.zeros(batch_attn_size, dtype=dtype)]
 for a in attns: # Ensure the second shape of attention
 # vectors is set.
 a.set_shape([None, attn_size])
 if initial_state_attention:
 attns = attention(initial_state)

Dissecting a Neural Translation Network | 213

Now we loop over the rest of the inputs. We perform a defensive check to ensure that
the input at the current time step is the right size. Then we run the RNN cell as well as
the attention query. These two are then combined and passed to the output according
to the same dynamics:

 for i, inp in enumerate(decoder_inputs):
 if i > 0:
 variable_scope.get_variable_scope().reuse_variables()
 # If loop_function is set, we use it instead of
 # decoder_inputs.
 if loop_function is not None and prev is not None:
 with variable_scope.variable_scope("loop_function",
 reuse=True):
 inp = loop_function(prev, i)
 # Merge input and previous attentions into one vector of
 # the right size.
 input_size = inp.get_shape().with_rank(2)[1]
 if input_size.value is None:
 raise ValueError("Could not infer input size from input:
 %s" % inp.name)
 x = linear([inp] + attns, input_size, True)
 # Run the RNN.
 cell_output, state = cell(x, state)
 # Run the attention mechanism.
 if i == 0 and initial_state_attention:
 with variable_scope.variable_scope(
 variable_scope.get_variable_scope(), reuse=True):
 attns = attention(state)
 else:
 attns = attention(state)

 with variable_scope.variable_scope(
 "AttnOutputProjection"):
 output = linear([cell_output] + attns, output_size,
 True)
 if loop_function is not None:
 prev = output
 outputs.append(output)

 return outputs, state

With this, we’ve successfully completed a full tour of the implementation details of a
fairly sophisticated neural machine translation system. Production systems have
additional tricks that are not as generalizable, and these systems are trained on huge
compute servers to ensure that state-of-the-art performance is met.

For reference, this exact model was trained on eight NVIDIA Telsa M40 GPUs for
four days. We show plots for the perplexity in Figure 7-31 and Figure 7-32, and show
the learning rate anneal over time as well.

214 | Chapter 7: Models for Sequence Analysis

Figure 7-31. Plot of perplexity on training data over time. After 50k epochs, the perplex‐
ity decreases from about 6 to 4, which is a reasonable score for a neural machine transla‐
tion system.

Figure 7-32. Plot of learning rate over time; as opposed to perplexity, we observe that the
learning rate almost smoothly declines to 0. This means that by the time we stopped
training, the model was approaching a stable state.

To showcase the attentional model more explicitly, we can visualize the attention that
the decoder LSTM computes while translating a sentence from English to French. In
particular, we know that as the encoder LSTM is updating its cell state in order to
compress the sentence into a continuous vector representations, it also computes hid‐
den states at every time step. We know that the decoder LSTM computes a convex
sum over these hidden states, and one can think of this sum as the attention mecha‐

Dissecting a Neural Translation Network | 215

nism; when there is more weight on a particular hidden state, we can interpret that as
the model is paying more attention to the token inputted at that time step.

This is exactly what we visualize in Figure 7-33. The English sentence to be translated
is on the top row, and the resulting French translation is on the first column. The
lighter a square is, the more attention the decoder paid to that particular column
when decoding that row element. That is, the (i, j)th element in the attention map
shows the amount of attention that was paid to the jth token in the English sentence
when translating the ith token in the French sentence.

Figure 7-33. We can explicitly visualize the weights of the convex sum when the decoder
attends over hidden states in the encoder. The lighter the square, the more attention was
placed on that element.

We can immediately see that the attention mechanism seems to be working quite
well. Large amounts of attention are generally being placed in the right areas, even
though there is slight noise in the model’s prediction. It is possible that adding addi‐
tional layers to the network would help produce crisper attention. One impressive
aspect is that the phrase “the European Economic” is translated in reverse in French
as the “zone économique européenne,” and as such, the attention weights reflect this
flip! These kinds of attention patterns may be even more interesting when translating
from English to a different language that does not parse smoothly from left to right.

With one of the most fundamental architectures understood and implemented, we
now move forward to study exciting new developments with recurrent neural net‐
works and begin a foray into more sophisticated learning.

216 | Chapter 7: Models for Sequence Analysis

Summary
In this chapter, we’ve delved deep into the world of sequence analysis. We’ve analyzed
how we might hack feed-forward networks to process sequences, developed a strong
understanding of recurrent neural networks, and explored how attentional mecha‐
nisms can enable incredible applications ranging from language translation to audio
transcription.

Summary | 217

1 https://mostafa-samir.github.io/

CHAPTER 8

Memory Augmented Neural Networks

Mostafa Samir1 and Surya Bhupatiraju

So far we’ve seen how effective an RNN can be at solving a complex problem like
machine translation. However, we’re still far from reaching its full potential! In Chap‐
ter 7 we mentioned that it’s theoretically proven that the RNN architecture is a uni‐
versal functional representer; a more precise statement of the same result is that
RNNs are Turing complete. This simply means that given proper wiring and adequate
parameters, an RNN can learn to solve any computable problem, which is basically
any problem that can be solved by a computer algorithm or, equivalently, a Turing
machine.

Neural Turing Machines
Though theoretically possible, it’s extremely difficult to achieve that kind of univer‐
sality in practice! This difficulty stems from the fact that we’re looking at an
immensely huge search space of possible wirings and parameter values of RNNs, a
space so vastly large for gradient descent to find an appropriate solution for any arbi‐
trary problem. However, in the remaining sections of this chapter we’ll start exploring
some approaches at the edge of research that would allow us to start tapping into that
potential!

Let’s think for a while about a very simple reading comprehension question like the
following:

Mary travelled to the hallway. She grabbed the milk glass there.
Then she travelled to the office, where she found an apple
and grabbed it.

219

https://mostafa-samir.github.io/

How many objects is Mary carrying?

The answer is so trivial: it’s two! But what actually happened in our brains that
allowed us to come up with the answer so trivially? If we thought about how we could
solve that comprehension question using a simple computer program, our approach
would probably go like this:

1. allocate a memory location for a counter
2. initialize counter to 0
3. for each word in passage
 3.1. if word is 'grabbed'
 3.1.1. increment counter
4. return counter value

It turns out that our brains tackle the same task in a very similar way to that simple
computer program. Once we start reading, we start allocating memory (just as our
computer program) and store the pieces of information we receive. We start by stor‐
ing that location of Mary, which after the first sentence is the hallway. In the second
sentence we store the objects Mary is carrying, and by now it’s only a glass of milk.
Once we see the third sentence, our brain modifies the first memory location to point
to the office. By the end of the fourth sentence, the second memory location is modi‐
fied to include both the milk and the apple. When we finally encounter the question,
our brains quickly query the second memory location and count the information
there, which turns out to be two! In neuroscience and cognitive psychology, such a
system of transient storing and manipulation of information is called a working mem‐
ory, and it’s the main inspiration behind the line of research we’ll be discussing in the
rest of this chapter.

In 2014, Graves et al. from Google DeepMind started this line of work in a paper
called “Neural Turing Machines” in which they introduced a new neural architecture
with the same name, a Neural Turing Machine (or NTM), that consists of a controller
neural network (usually an RNN) with an external memory that resembles the brain’s
working memory. For the close resemblance between the working memory model
and the computer model we just saw, Figure 8-1 shows that the same resemblance
holds for the NTM architecture, with the external memory in place of the RAM, the
read/write heads in place of the read/write buses, and the controller network in place
of the CPU, except for the fact that the controller learns its program, unlike the CPU,
which is fed its program.

220 | Chapter 8: Memory Augmented Neural Networks

https://arxiv.org/abs/1410.5401

Figure 8-1. Comparing the architecture of a modern day computer which is fed its pro‐
gram (left) to a Neural Turing Machine that learns its program (right). This example has
a single read head and single write head, but an NTM can have several in practice.

If we thought about NTMs in light of our earlier discussion of RNN’s Turing com‐
pleteness, we’ll find that augmenting the RNN with an external memory for transient
storage prunes a large portion out of that search space, as we now don’t care about
exploring RNNs that can both process and store the information; we’re just looking
for the RNNs that can process the information stored outside of it. This pruning of
the search space allows us to start tapping into some of the RNN potentials that were
locked away before augmenting it with a memory, evident by the variety of tasks that
the NTM could learn: from copying input sequences after seeing them, to emulating
N-gram models, to performing a priority sort on data. We’ll even see by the end of the
chapter how an extension to the NTM can learn to do reading comprehension tasks
like the one we saw earlier, with nothing more than a gradient-based search!

Attention-Based Memory Access
To be able to train an NTM with a gradient-based search method, we need to make
sure that the whole architecture is differentiable so that we can compute the gradient
of some output loss with respect to the model’s parameters that process the input.
This property is called end-to-end-differentiable, with one end being the inputs and
the other the outputs. If we attempted to access the NTM’s memory in the same way a
digital computer accesses its RAM, via discrete values of addresses, the discreteness of
the addresses would introduce discontinuities in gradients of the output, and hence

Attention-Based Memory Access | 221

we would lose ability to train the model with a gradient-based method. We need a
continuous way to access the memory while being able to “focus” on a specific loca‐
tion in it. This kind of continuous focusing can be achieved via attention methods!

Instead of generating a discrete memory address, we let each head generate a normal‐
ized softmax attention vector with the same size as the number of memory locations.
With this attention vector, we’ll be accessing all the memory locations at the same
time in a blurry manner, with each value in the vector telling us how much we’re
going to focus on the corresponding location, or how likely we’re going to access it.
For example, to read a vector at a time step t out of our N × W NTM’s memory
matrix denoted by Mt (where N is the number of locations and W is the size of the
location), we generate an attention vector, or a weighting vector wt of size N, and our
read vector can be calculated via the product:

 �t = Mt
⊤wt

where ⊤ denotes the matrix transpose operation. Figure 8-2 shows how with the
weights attending to a specific location, we can retrieve a read vector that approxi‐
mately contains the same information as the content of that memory location.

Figure 8-2. A demonstration of how a blurry attention-based reading can retrieve a vec‐
tor containing approximately the same information as in the focused-on location

A similar attention weighting method is used for the write head: a weighting vector
wt is generated and used for erasing specific information from the memory, as speci‐
fied by the controller in an erase vector et that has W values between 0 and 1 specify‐
ing what to erase and to what keep. Then we use the same weighting for writing to the
erased memory matrix some new information, also specified by the controller in a
write vector vt containing W values:

 Mt = Mt − 1 ∘ E − wtet
⊤ + wtvt

⊤

where E is a matrix of ones and ∘ is element-wise multiplication. Similar to the read‐
ing case, the weighting wt tells us where to focus our erasing (the first term of the
equation) and writing operations (the second term).

222 | Chapter 8: Memory Augmented Neural Networks

NTM Memory Addressing Mechanisms
Now that we understand how NTMs access their memories in a continuous manner
via attention weighting, we’re left with how these weightings are generated and what
forms of memory addressing mechanisms they represent. We can understand that by
exploring what NTMs are expected to do with their memories, and based on the
model they are mimicking (the Turning machine), we expect them to be able access a
location by the value it contains, and to be able to go forward or backward from a
given location.

The first mode of behavior can be achieved with an access mechanism that we’ll call
content-based addressing. In this form of addressing, the controller emits the value
that it’s looking for, which we’ll call a key kt, then it measures its similarity to the
information stored in each location and focuses the attention on the most similar
one. This kind of weighting can be calculated via:

 𝒞(M,k, β) = exp β� M, k

∑i = 0
N exp β� M i , k

where � is some similarity measure, like the cosine similarity. The equation is noth‐
ing more than a normalized softmax distribution over the similarity scores. There is,
however, an extra parameter β that is used to attenuate the attention weights if
needed. We call that the key strength. The main idea behind that parameter is that for
some tasks, the key emitted by the controller may not be very close to any of the
information in the memory which would result in seemingly uniform attention
weights. Figure 8-3 shows how the key strength allows the controller to learn how to
attenuate such uniform attention to be more focused on a single location that is the
most probable; the controller then learns what value of the strength to emit with each
possible key it emits.

NTM Memory Addressing Mechanisms | 223

Figure 8-3. An indecisive key with unit strength results in a nearly-uniform attention
vector, which isn’t helpful. Increasing the strength for keys like that focuses the attention
on the most probable location.

To move forward and backward in the memory, we first need to know where are we
standing now, and such information is located in the access weighting from the last
time step wt − 1. So to preserve the information about our current location with the
new content-based weighting wt

c we just got, we interpolate between the two weight‐
ing using a scalar gt that lies between 0 and 1:

 wt
g = gtwt

c + 1 − gt wt − 1

We call gt the interpolation gate, and it’s also emitted by the controller to control the
kind of information we want to use in the current time step. When the gate’s value is
close to 1, we favor the addressing given by content lookup. However, when it’s close
to 0, we tend to pass the information about our current location through and ignore
the content-based addressing. The controller learns to use this gate so that, for exam‐
ple, it could set it 0 when iteration through consecutive locations is desired and infor‐
mation about the current location is crucial. The type of information the controller
chooses to gate through is denoted by the gated weighting wt

g.

To start moving around the memory we need a way to take our current gated weight‐
ing and shift the focus from one location to another. This can be done via convolut‐
ing the gated weighting with a shift weighting st also emitted by the controller. This
shift weighting is a normalized softmax attention vector of size n + 1, where n is an
even integer specifying the number of possible shifts around the focused-on location
in the gated weighting; for example, if it has a size of 3, then there are two possible
shifts around a location: one forward and one backward. Figure 8-4 shows how a shift
weighting can move around the focused-on location in gated weighting. The shifting

224 | Chapter 8: Memory Augmented Neural Networks

occurs via convoluting the gated weighting by the shift weighting in pretty much the
same way we convoluted images with feature maps back in Chapter 5. The only
exception is in how we handle the case when the shift weightings go outside the gated
weighting. Instead of using padding like we did before, we use a rotational convolu‐
tion operator where overflown weights get applied to the values at the other end of
the gated weighting, as shown in middle panel of Figure 8-4. This operation can be
expressed element-wise as:

 wt i = ∑ j = 0
st wt

g i +
st − 1

2 − j mod N st j

Figure 8-4. (left) A shift weighting focused on the right shifts the gated weighting one
location to the right. (middle) Rotational convolution on a left-focused shift weighting,
shifting the gated weighting to the left. (right) A nonsharp centered shift weighting keeps
the gated weighting intact but disperses it.

With the introduction of the shifting operation, our heads’ weightings can now move
around the memory freely forward and backward. However, a problem occurs if at
any time the shift weighting is not sharp enough. Because of the nature of the convo‐
lution operation, a nonsharp shift weighting (as in the right panel of Figure 8-4) dis‐
perses the original gated weightings around its surroundings and results in a less
focused shifted weighting. To overcome that blurring effect, we run the shifted
weightings through one last operation: a sharpening operation. The controller emits
one last scalar γt ≥ 1 that sharpens the shifted weightings via:

 wt =
wt

γt

∑i = 0
N wt i

γt

Starting from interpolation down to the final weighting vector out of sharpening, this
process constitutes the second addressing mechanism of NTMs: the location-based
mechanism. Using a combination of both addressing mechanisms, an NTM is able to
utilize its memory to learn to solve various tasks. One of these tasks that would allow
us to get a deeper look into the NTM in action is the copy task shown in Figure 8-5.
In this task, we present the model with a sequence of random binary vectors that ter‐

NTM Memory Addressing Mechanisms | 225

minate with a special end symbol. We then request the same input sequence to be
copied to the output.

Figure 8-5. A visualization of an NTM trained on the copy task. (left) From top to bot‐
tom it shows the model’s input, write vectors, and the write weightings across the mem‐
ory locations through time. (right) From top to bottom it shows the model’s output, read
vectors, and read weighting across the memory locations through time. Source: Graves et
al. “Neural turing machines.” (2014)

The visualization shows how at the input time, the NTM starts writing the inputs step
by step into consecutive locations in the memory. In the output time, the NTM goes
back at the first written vector and iterates through the next locations to read and
return the previously written input sequence. The original NTM paper contains sev‐
eral other visualizations of NTMs trained on different problems which are worth
checking. These visualizations demonstrate the architecture’s ability to utilize the
addressing mechanisms to adapt to and learn to solve various tasks.

We’ll suffice with our current understanding of NTMs and skip its implementation.
Instead, we will spend the rest of the chapter exploring the drawbacks of NTMs and
how the novel architecture of Differentiable Neural Computer (DNC) was able to
overcome these drawbacks. We’ll conclude our discussion by implementing that
novel architecture on simple reading comprehension tasks like the one we saw earlier.

Differentiable Neural Computers
Despite the power of NTMs, they have a few limitations regarding their memory
mechanisms. The first of these limitations is that NTMs have no way to ensure that
no interference or overlap between written data would occur. This is due to the
nature of the “differentiable” writing operation in which we write new data every‐
where in the memory to some extent specified by the attention. Usually, the attention
mechanisms learn to focus the write weightings strongly on a single memory loca‐

226 | Chapter 8: Memory Augmented Neural Networks

https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401

tion, and the NTM converges to a mostly interference-free behavior, but that’s not
guaranteed.

However, even when the NTM converges to an interference-free behavior, once a
memory location has been written to, there’s no way to reuse that location again, even
when the data stored in it becomes irrelevant. The inability to free and reuse memory
locations is the second limitation to the NTM architecture. This results in new data
being written to new locations which are likely to be contiguous, as we saw with the
copy task. This contiguous writing fashion is the only way for an NTM to record any
temporal information about the data being written: consecutive data is stored in con‐
secutive locations. If the write head jumped to another place in the memory while
writing some consecutive data, a read head won’t be able to recover the temporal link
between the data written before and after the jump: this constitutes the third limita‐
tion of NTMs.

In October 2016, Graves et al. from DeepMind published in Nature a paper
titled “Hybrid computing using a neural network with dynamic external memory” in
which they introduced a new memory-augmented neural architecture called differen‐
tiable neural computer (DNC) that improves on NTMs and addresses those limita‐
tions we just discussed. Similar to NTMs, DNCs consists of a controller that interacts
with an external memory. The memory consists of N words of size W, making up
an N × W matrix we’ll be calling M. The controller takes in an input vector of size
X and the R vectors of size W read from memory in the previous step, where R is the
number of read heads. The controller then processes them through a neural network,
then returns two pieces of information:

• An interface vector that contains all the necessary information to query the mem‐
ory (i.e., write and read from it)

• A pre-output vector of size Y

The external memory then takes in the interface vector, performs the necessary writ‐
ing through a single write head, then reads R new vectors from the memory. It
returns the newly read vectors to the controller to be added with the pre-output vec‐
tor, producing the final output vector of size Y.

Figure 8-6 summarizes the operation of the DNC that we just described. We can see
that unlike NTMs, DNCs keep other data structures alongside the memory itself to
keep track of the state of the memory. As we’ll shortly see, with these data structures
and some clever new attention mechanisms, DNCs are able to successfully overcome
NTM’s limitations.

Differentiable Neural Computers | 227

http://go.nature.com/2peM8m2

Figure 8-6. An overview of DNC’s architecture and operation.
DNC’s external memory differs from that of an NTM by several extra data structures as
well as by the attention mechanisms used to access the memory.

To make the whole architecture differentiable, DNCs access the memory through
weight vectors of size N whose elements determine how much the heads focus on
each memory location. There are R weightings for the read
heads wt

r, 1,⋯, wt
r, R where t denotes the time step. On the other hand, there’s one

write weighting wt
w for the single write head. Once we obtain these weightings, we

can modify the memory matrix and get updated via:

 Mt = Mt − 1 ∘ E − wt
wet
⊤ + wt

wvt
⊤

et, vt are the erase and write vectors we saw earlier with NTMs, coming from the con‐
troller through the interface vector as instructions about what to erase from and write
to the memory.

As soon as we get the updated memory matrix Mt, we can read out the new read vec‐
tors rt

1, rt
2,⋯, rt

R using the following equation for each read weighting:

 rt
i = Mt

⊤wt
r, i

Up until now, it seems that there’s nothing different from how NTMs write to and
read from memory. However, the differences will start to show up when we discuss
the attention mechanisms DNCs use to obtain their access weightings. While they
both share the content-based addressing mechanism 𝒞(M, k, β) defined earlier,
DNCs use more sophisticated mechanisms to attend more efficiently to the memory.

228 | Chapter 8: Memory Augmented Neural Networks

Interference-Free Writing in DNCs
The first limitation we discussed of NTMs was their inability to ensure an
interference-free writing behavior. An intuitive way to address this issue is to design
the architecture to focus strongly on a single, free memory location and not wait for
NTM to learn to do so. In order to keep track of which locations are free and which
are busy, we need to introduce a new data structure that can hold this kind of infor‐
mation. We’ll call it the usage vector.

The usage vector ut is a vector of size N where each element holds a value between 0
and 1 that represents how much the corresponding memory location is used; with 0
indicating a completely free location and 1 indicating a completely used one.

The usage vector initially contains zeros u0 = 0 and gets updated with the usage
information across the steps. Using this information, it’s clear that the location to
which the weights should attend most strongly to is the one with the least usage
value. To obtain such weighting, we need first to sort the usage vector and obtain the
list of location indices in ascending order of the usage; we call such a list a free list and
denote it by ϕt. Using that free list, we can construct an intermediate weighting called
the allocation weighting at that would determine which memory location should be
allocated for new data. We calculate at using:

 at ϕt j = 1 − ut ϕt j ∏i = 1
j − 1 ut ϕt i where j ∈ 1,⋯, N

This equation may look incomprehensible at first glance. A good way to understand it
is to work through it with a numerical example, for example,
when ut = 1, 0 . 7, 0 . 2, 0 . 4 . We’ll leave the details for you to go through. In the end
you should arrive at the allocation weighting being at = 0, 0 . 024, 0 . 8, 0 . 12 . As we
go through the calculations, we’ll begin to understand how this formula works:
the 1 − ut ϕt j makes the location weight proportional to how free it is. By noticing
that the product ∏i = 1

j − 1 ut ϕt j gets smaller and smaller as we iterate through the free
list (because we keep multiplying small values between 0 and 1), we can see that this
product decreases the location weight even more as we go from the least used loca‐
tion to the most used one, which finally results in the least used location having the
largest weight, while the most used one gets the smallest weight. So we’re able to guar‐
antee the ability to focus on a single location by design without the the need to hope
for the model to learn it on its own from scratch; this means more reliability as well
as faster training time.

With the allocation weighting at and lookup weighting ct
w we get from the content-

based addressing mechanism ct
w = 𝒞 Mt − 1, kt

w, βt
w where kt

w, βt
w are the lookup key

and the lookup strength we receive through the interface vector, we can now con‐
struct our final write weighting:

Interference-Free Writing in DNCs | 229

 wt
w = gt

w gt
aat + 1 − gt

a ct
w

where gt
w, gt

a are values between 0 and 1 called the write and allocation gates, which
we also get from the controller through the interface vector. These gates control the
writing operation with gt

w determining if any writing is going to happen in the first
place, and gt

a specifying whether we’ll write to a new location using the allocation
weighting or modify an existing value specified by the lookup weighting.

DNC Memory Reuse
What if while we calculate the allocation weighting we find that all locations are used,
or in other words ut = 1? This means that the allocation weightings will turn out all
zeros and no new data can be allocated to memory. This raises the need for the ability
to free and reuse the memory.

In order to know which locations can be freed and which cannot, we construct a
retention vector ψt of size N that specifies how much of each location should be
retained and not get freed. Each element of this vector takes a value between 0 and 1,
with 0 indicating that the corresponding location can be freed and 1 indicating that it
should be retained. This vector is calculated using:

 ψt = ∏i = 1
R 1 − f t

iwt − 1
r, i

This equation is basically saying that the degree to which a memory location should
be freed is proportional to how much is read from it in the last time steps by the vari‐
ous read heads (represented by the values of the read weightings wt − 1

r, i). However,
continuously freeing a memory location once its data is read is not generally prefera‐
ble as we might still need the data afterward. We let the controller decide when to free
and when to retain a location after reading by emitting a set of R free
gates f t

1,⋯, f t
R that have a value between 0 and 1. This determines how much freeing

should be done based on the fact that the location was just read from. The controller
will then learn how to use these gates to achieve the behavior it desires.

Once the retention vector is obtained, we can use it to update the usage vector to
reflect any freeing or retention made via:

 ut = ut − 1 + wt − 1
w − ut − 1 ∘ wt − 1

w ∘ ψt

This equation can be read as follows: a location will be used if it has been retained (its
value in ψt ≈ 1) and either it’s already in use or has just been written to (indicated by
its value in ut − 1 + wt − 1

w). Subtracting the element-wise product ut − 1 ∘ wt − 1
w brings

the whole expression back between 0 and 1 to be a valid usage value in case the addi‐
tion between the previous usage got the write weighting past 1.

230 | Chapter 8: Memory Augmented Neural Networks

By doing this usage update step before calculating the allocation, we can introduce
some free memory for possible new data. We’re also able to use and reuse a limited
amount of memory efficiently and overcome the second limitation of NTMs.

Temporal Linking of DNC Writes
With the dynamic memory management mechanisms that DNCs use, each time a
memory location is requested for allocation, we’re going to get the most unused loca‐
tion, and there’ll be no positional relation between that location and the location of
the previous write. With this type of memory access, NTM’s way of preserving tem‐
poral relation with contiguity is not suitable. We’ll need to keep an explicit record of
the order of the written data.

This explicit recording is achieved in DNCs via two additional data structures along‐
side the memory matrix and the usage vector. The first is called a precedence vector pt,
an N-sized vector considered to be a probability distribution over the memory loca‐
tions, with each value indicating how likely the corresponding location was the last
one written to. The precedence is initially set to zero p0 = 0 and gets updated in the
following steps via:

 pt = 1 − ∑i = 1
N wt

w i pt − 1 + wt
w

Updating is done by first resetting the previous values of the precedence with a reset
factor that is proportionate to how much writing was just made to the memory (indi‐
cated by the summation of the write weighting’s components). Then the value of
write weighting is added to the reset value so that a location with a large write weight‐
ing (that is the most recent location written to) would also get a large value in the
precedence vector.

The second data structure we need to record temporal information is the link
matrix Lt. The link matrix is an N × N matrix in which the element Lt i, j has a value
between 0,1, indicating how likely it is that location i was written after location j. This
matrix is also initialized to zeros, and the diagonal elements are kept at zero through‐
out the time Lt i, i = 0, as it’s meaningless to track if a location was written after itself
when the previous data has already been overwritten and lost. However, each other
element in the matrix is updated using:

 Lt i, j = 1 − wt
w i − wt

w j Lt − 1 i, j + wt
w i pt − 1 j

The equation follows the same pattern we saw with other update rules: first the link
element is reset by a factor proportional to how much writing had been done on loca‐
tions i, j. Then the link is updated by the correlation (represented here by multiplica‐
tion) between the write weighting at location i and the previous precedence value of

Temporal Linking of DNC Writes | 231

location j. This eliminates NTM’s third limitation; now we can keep track of temporal
information no matter how the write head hops around the memory.

Understanding the DNC Read Head
Once the write head has finished updating the memory matrix and the associated
data structures, the read head is now ready to work. Its operation is simple: it needs to
be able to look up values in the memory and be able to iterate forward and backward
in temporal ordering between data. The lookup ability can simply be achieved with
content-based addressing: for each read head, i we calculate an intermediate weight‐
ing ct

r, i = 𝒞 Mt, kt
r, i, βt

r, i where kt
r, 1,⋯, kt

r, R and βt
r, 1,⋯, βt

r, R are two sets of R read
keys and strengths received from the controller in the interface vector.

To achieve forward and backward iterations, we need to make the weightings go a
step ahead or back from the location they recently read from. We can achieve that for
the forward by multiplying the link matrix by the last read weightings. This shifts the
weights from the last read location to the location where of the last write specified by
the link matrix and constructs an intermediate forward weighting for each read
head i: f t

i = Ltwt − 1
r, i . Similarly, we construct an intermediate backward weighting by

multiplying the transpose of the link matrix by the last read weight‐
ings bt

i = Lt − 1
⊤ wt − 1

r, i .

We can now construct the new read weightings for each read using the following rule:

 wt
r, i = πt

i 1 bt
i + πt

i 2 ct
i + πt

i 3 f t
i

where πt
1,⋯, πt

R are called the read modes. Each of these are a softmax distribution
over three elements that come from the controller on the interface vector. Its three
values determine the emphasis the read head should put on each read mechanism:
backward, lookup, and forward, respectively. The controller learns to use these modes
to instruct the memory on how data should be read.

The DNC Controller Network
Now that we’ve figured out the internal workings of the external memory in the DNC
architecture, we’re left with understanding how the controller that coordinates all the
memory operations work. The controller’s operation is simple: in its heart there’s a
neural network (recurrent or feed-forward) that takes in the input step along with the
read-vectors from the last step and outputs a vector whose size depends on the archi‐
tecture we chose for the network. Let’s denote that vector by 𝒩(χt), where 𝒩 denotes
whatever function is computed by the neural network, and χt denotes the concatena‐
tion of the input step and the last read vectors χt = xt; rt − 1

1 ;⋯; rt − 1
R . This concate‐

232 | Chapter 8: Memory Augmented Neural Networks

nation of the last read vectors serves a similar purpose as the hidden state in a regular
LSTM: to condition the output on the past.

From that vector emitted from the neural network, we need two pieces of informa‐
tion. The first one is the interface vector ζt. As we saw, the interface vector holds all
the information for the memory to carry out its operation. We can look at the ζt vec‐
tor as a concatenation of the individual elements we encountered before, as depicted
in Figure 8-7.

Figure 8-7. The interface vector decomposed to its individual components

By summing up the sizes along the components, we can consider the ζt vector as one
big vector of size R × W + 3W + 5R + 3. So in order to obtain that vector from the
network output, we construct a learnable 𝒩 × R × W + 3W + 5R + 3 weights
matrix Wζ, where 𝒩 is the size of the network’s output, and such that:

 ζt = Wζ𝒩 χt

Before passing that ζt vector to the memory, we need to make sure that each compo‐
nent has a valid value. For example, all the gates as well as the erase vector must have
values between 0 and 1, so we pass them through a sigmoid function to ensure that
requirement:

 et = σ et , f t
i = σ f t

i , gt
a = σ gt

a , gt
w = σ gt

w where σ z = 1

1 + e−z

Also, all the lookup strengths need to have a value larger than or equal to 1, so we
pass them through a oneplus function first:

 βt
r, i = oneplus βt

r, i , βt
w = oneplus βt

w where oneplus z = 1 + log 1 + ez

And finally, the read modes must have a valid softmax distribution:

 πt
i = softmax πt

i where softmax z = ez

∑ j e
z j

By these transformations, the interface vector is now ready to be passed to the mem‐
ory; and while it guides the memory in its operations, we’ll be needing a second piece
of information from the neural network, the pre-output vector vt. This is a vector of
the same size of the final output vector, but it’s not the final output vector. By using
another learnable 𝒩 × Y weights matrix Wy, we can obtain the pre-output via:

 vt = Wy𝒩 χt

The DNC Controller Network | 233

This pre-output vector gives us the ability to condition our final output not just on
the network output, but also on the recently read vectors rt from memory. Via a third
learnable R × W × Y weights matrix Wr, we can get the final output as:

 ;yt = vt + Wr rt
1;⋯; rt

R

Given that the controller knows nothing about the memory except for the word
size W, an already learned controller can be scaled to a larger memory with more
locations without any need for retraining. Also, the fact that we didn’t specify any par‐
ticular structure for the neural network or any particular loss function makes DNC a
universal architecture that can be applied to a variety of tasks and learning problems.

Visualizing the DNC in Action
One way to see DNC’s operation in action is to train it on a simple task that would
allow us to look at the weightings and the parameters’ values and visualize them in an
interpretable way. For this simple task, we’ll use the copy problem we already saw
with NTMs, but in a slightly modified form.

Instead of trying to copy a single sequence of binary vectors, our task here will be to
copy a series of such sequences. Figure 8-8 (a) shows the single sequence input. After
processing such single sequence input and copying the same sequence to the output,
the DNC would have finished its program, and its memory would be reset in a way
that will not allow us to see how it can dynamically manage it. Instead we’ll treat a
series of such sequences, shown in Figure 8-8 (b), as a single input.

Figure 8-8. Single sequence input versus a series of input sequences

Figure 8-9 shows a visualization of the DNC operation after being trained on a series
of length 4 where each sequence contains five binary vectors and an end mark. The
DNC used here has only 10 memory locations, so there’s no way it can store all 20

234 | Chapter 8: Memory Augmented Neural Networks

vectors in the input. A feed-forward controller is used to insure that nothing would
be stored in a recurrent state, and only one read head is used to make the visualiza‐
tion more clear. These constraints should force the DNC to learn how to deallocate
and reuse memory in order to successfully copy the whole input, and indeed it does.

We can see in that visualization how the DNC is writing each vector of the five in a
sequence into a single memory location. As soon as the end mark is seen, the read
head starts reading from these locations in the exact same order of writing. We can
see how both the allocation and free gates alternate in activation between writing and
reading phases of each sequence in the series. From the usage vector chart at the bot‐
tom, we can also see how after a memory location is written to, its usage becomes
exactly 1, and how it drops to 0 just after reading from that location indicating that it
was freed and can be reused again.

Visualizing the DNC in Action | 235

2 https://github.com/Mostafa-Samir/DNC-tensorflow

Figure 8-9. Visualization of the DNC operation on the copy problem

This visualization is part of the open source implementation of the DNC architecture
by Mostafa Samir.2 In the next section we’ll learn the important tips and tricks that
will allow us to implement a simpler version of DNC on the reading comprehension
tasks.

236 | Chapter 8: Memory Augmented Neural Networks

https://github.com/Mostafa-Samir/DNC-tensorflow

Implementing the DNC in TensorFlow
Implementing the DNC architecture is essentially a direct application of the math we
just discussed. So with the full implementation in the code repository associated with
the book, we’ll just be focusing on the tricky parts and introduce some new Tensor‐
Flow practice while we’re at it.

The main part of the implementation resides in the mem_ops.py file where all of the
attention and access mechanisms are implemented. This file is then imported to be
used with the controller. Two operations that might be a little tricky to implement are
the link matrix update and the allocation weighting calculation. Both of these opera‐
tions can be naively implemented with for loops, but using for loops in creating a
computational graph is generally not a good idea. Let’s take the link matrix update
operation first and see how it looks with a loop-based implementation:

def Lt(L, wwt, p, N):

 L_t = tf.zeros([N,N], tf.float32)
 for i in range(N):
 for j in range(N):
 if i == j:
 continue
 _mask = np.zeros([N,N], np.float32);
 _mask[i,j] = 1.0
 mask = tf.convert_to_tensor(_mask)

 link_t = (1 - wwt[i] - wwt[j]) * L[i,j] +
 wwt[i] * p[j]
 L_t += mask * link_t

 return L_t

We used a masking trick here because TensorFlow doesn’t support assignment for
tensors’ slices. We can find out what’s wrong with this implementation by remember‐
ing that TensorFlow represents a type of programming called symbolic, where each
call to an API doesn’t carry out an operation and change the program state, but
instead defines a node in a computational graph as a symbol for the operation we
want to carry out. After that computational graph is fully defined, it’s then fed with
concrete values and executed. With that in mind, we can see, as depicted
in Figure 8-10, how in most of the iterations of the for loop a new set of nodes repre‐
senting the loop body gets added in the computational graph. So for N memory loca‐
tions, we end up with N2 − N identical copies of the same nodes, each for each
iteration, each taking up a chunk of our RAM and needing its own time to be pro‐
cessed before the next can be. When N is a small number, say 5, we get 20 identical
copies, which is not so bad. However, if we want to use a larger memory, like with
N = 256, we get 65,280 identical copies of the nodes, which is catastrophic for both
the memory usage and the execution time!

Implementing the DNC in TensorFlow | 237

Figure 8-10. The computational graph of the link matrix update operation built with the
for loop implementation

One possible way to overcome such issue is vectorization. In vectorization, we take an
array operation that is originally defined in terms of individual elements and rewrite
it as an operation on the whole array at once. For the link matrix update, we can
rewrite the operation as:

 Lt = 1 − wt
w⊕ wt

w ∘ Lt − 1 + wt
wpt − 1 ∘ 1 − I

Where I is the identity matrix, and the product wt
wpt − 1 is an outer product. To ach‐

ieve this vectorization, we define a new operator, the pairwise-addition of vectors,
denoted by ⊕. This new operator is simply defined as:

 u⊕ v =

u1 + v1 ⋯ u1 + vn

⋮ ⋱ ⋮

un + v1 ⋯ un + vn

This operator adds a little bit to the memory requirements of the implementation, but
not as much as the case in the loop-based implementation. With this vectorized refor‐
mulation of the update rule, we rewrite a more memory- and time-efficient imple‐
mentation:

238 | Chapter 8: Memory Augmented Neural Networks

def Lt(L, wwt, p, N):

 # we only need the case of adding a single vector to itself
 def pairwise_add(v):
 n = v.get_shape().as_list()[0]
 # an NxN matrix of duplicates of u along the columns
 V = tf.concat(1, [v] * n)
 return V + V

 I = tf.constant(np.identity(N, dtype=np.float32))
 updated = (1 - pairwise_add(wwt)) * L + tf.matmul(wwt, p)
 updated = updated * (1 - I) # eliminate self-links
 return updated

A similar process could be made for the allocation weightings rule. Instead of having
a single rule for each element in the weighting vector, we can decompose it into a few
operations that work on the whole vector at once:

1. While sorting the usage vector to get the free list, we also grab the sorted usage
vector itself.

2. We calculate the cumulative product vector of the sorted usage. Each element of
that vector is the same as the product term in our original element-wise rule.

3. We multiply the cumulative product vector by (1-the sorted usage vector). The
resulting vector is the allocation weighting but in the sorted order, not the origi‐
nal order of the memory location.

4. For each element of that out-of-order allocation weighting, we take its value and
put it in the corresponding index in the free list. The resulting vector is now the
correct allocation weighting that we want.

Figure 8-11 summarizes this process with a numerical example.

Implementing the DNC in TensorFlow | 239

Figure 8-11. The vectorized process of calculating the allocation weightings

It may seem that we still need loops for the sorting operation in step 1 and for reor‐
dering the weights in step 4, but fortunately TensorFlow provides symbolic opera‐
tions that would allow us to carry out these operations without the need for a Python
loop.

For sorting we’ll be using tf.nn.top_k. This operation takes a tensor and a number
k and returns both the sorted top k values in descending order and the indices of
these values. To get the sorted usage vector in ascending order, we need to get the top
N values of the negative of the usage vector. We can bring back the sorted values to
their original signs by multiplying the resulting vector by −1:

sorted_ut, free_list = tf.nn.top_k(-1 * ut, N)
sorted_ut *= -1

For reordering the allocation weights, we’ll make use of a new TensorFlow data struc‐
ture called TensorArray. We can think of these tensor arrays as a symbolic alterna‐

240 | Chapter 8: Memory Augmented Neural Networks

tive for Python’s list. We first create an empty tensor array of size N to be the
container of the weights in their correct order, and then put the values at their correct
places using the instance method scatter(indices, values). This method takes in
its second argument a tensor and scatters the values along its first dimension across
the array, with the first argument being a list of indices of the locations to which we
want to scatter the corresponding values. In our case here, the first argument is the
free list, and the second is the out-of-order allocation weightings. Once we get the
array with the weights in the correct places, we use another instance method pack()
to wrap up the whole array into a Tensor object:

empty_at = tf.TensorArray(tf.float32, N)
full_at = empty_at.scatter(free_list, out_of_location_at)

a_t = full_at.pack()

The last part of the implementation that requires looping is the controller loop itself,
the loop that goes over each step of the input sequence to process it. Because vectori‐
zation only works when operations are defined element-wise, the controller’s loop
can’t be vectorized. Fortunately, TensorFlow still provides us with a method to escape
Python’s for loops and their massive performance hit; this method is the symbolic
loop. Symbolic loops work like most of our symbolic operations: instead of unrolling
the actual loop into the graph, it defines a node that would be executed as a loop
when the graph is executed.

We can define a symbolic loop using tf.while_loop(cond, body, loop_vars). The
loop_vars argument is a list of the initial values of tensors and/or tensor arrays that
are passed through each iteration of the loop; this list can possibly be nested. The
other two arguments are callables (functions or lambdas) that are passed to this list of
loop variables at each iteration. The first argument cond represents the loop condi‐
tion. As long as this callable is returning true, the loop will keep on working. The
other argument body represents the body of the loop that gets executed at each itera‐
tion. This callable is the one responsible for modifying the loop variables and return‐
ing them back to the next iteration. Such modifications, however, must keep the
tensor’s shape consistent throughout the iterations. After the loop is executed, the list
of loop variables with their values after the last iteration is returned.

To get a better understanding of how symbolic loops can be used, we’ll try now to
apply this to a simple use case. Suppose that we are given a vector of values and we
want to get its cumulative sum vector. We achieve that with tf.while_loop, as in the
following code:

Implementing the DNC in TensorFlow | 241

values = tf.random_normal([10])

index = tf.constant(0)
values_array = tf.TensorArray(tf.float32, 10)
cumsum_value = tf.constant(0.)
cumsum_array = tf.TensorArray(tf.float32, 10)

values_array = values_array.unpack(values)

def loop_body(index, values_array, cumsum_value, cumsum_array):
 current_value = values_array.read(index)
 cumsum_value += current_value
 cumsum_array = cumsum_array.write(index, cumsum_value)
 index += 1

 return (index, values_array, cumsum_value, cumsum_array)

_, _, _, final_cumsum = tf.while_loop(
 cond= lambda index, *_: index < 10,
 body= loop_body,
 loop_vars= (index, values_array, cumsum_value,
 cumsum_array)
)

cumsum_vector = final_cumsum.pack()

We first use the unpack(values) of the tensor array to unpack a tensor’s values along
its first dimension across the array. In the body loop we get the value at the current
index using the read(index) method, which returns the value at the given index in
the array. We then calculate the cumulative sum so far and add it to the cumulative
sum array using the write(index, value) method which writes the given value in
the array at the given index. Finally, after the loop is fully executed, we get the final
cumulative sum array and pack it into a tensor. A similar pattern is used to imple‐
ment the DNC’s loop over the input sequence steps.

Teaching a DNC to Read and Comprehend
Earlier in the chapter, back when we were talking about neural n-grams, we said that
it’s not of the complexity of an AI that can answer questions after reading a story.
Now we have reached the point that we can build such a system because this is exactly
what DNCs do when applied on the bAbI dataset.

The bAbI dataset is a synthetic dataset consisting of 20 sets of stories, questions on
those stories, and their answers. Each set represents a specific and unique task of rea‐
soning and inference from text. In the version we’ll use, each task contains 10,000
questions for training and 1,000 questions for testing. For example, the following
story (from which the passage we saw earlier was adapted) is from the lists-and-sets

242 | Chapter 8: Memory Augmented Neural Networks

task where the answers to the questions are lists/sets of objects mentioned in the
story:

1 Mary took the milk there.
2 Mary went to the office.
3 What is Mary carrying? milk 1
4 Mary took the apple there.
5 Sandra journeyed to the bedroom.
6 What is Mary carrying? milk,apple 1 4

This is taken directly from the dataset, and as you can see, a story is organized into
numbered sentences that start from 1. Each question ends with a question mark, and
the words that directly follow the question mark are the answers. If an answer con‐
sists of more than one word, the words are separated by commas. The numbers that
follow the answers are supervisory signals that point to the sentences that contain the
answers’ words.

To make the tasks more challenging, we’ll discard these supervisory signals and let
the system learn to read the text and figure out the answer on its own. Following the
DNC paper, we’ll preprocess our dataset by removing all the numbers and punctua‐
tion except for “?” and “.”, bringing all the words to lowercase, and replacing the
answer words with dashes “-” in the input sequence. After this we get 159 unique
words and marks (lexicons) across all the tasks, so we’ll encode each lexicon as a one-
hot vector of size 159, no embeddings, just the plain words directly. Finally, we com‐
bine all the of 200,000 training questions to train the model jointly on them, and we
keep each task’s test questions separate to test the trained model afterward on each
task individually. This whole process is implemented in the preprocess.py file in the
code repository.

To train the model, we randomly sample a story from the encoded training data, pass
it through the DNC with an LSTM controller, and get the corresponding output
sequence. We then measure the loss between the output sequence and the desired
sequence using the softmax cross-entropy loss, but only on the steps that contain
answers. All the other steps are ignored by weighting the loss with a weights vector
that has 1 at the answer’s steps and 0 elsewhere. This process is implemented in the
train_babi.py file.

After the model is trained, we test its performance on the remaining test questions.
Our metric will be the percentage of questions the model failed to answer in each
task. An answer to a question is the word with the largest softmax value in the output,
or the most probable word. A question is considered to be answered correctly if all of
its answer’s words are the correct words. If the model failed to answer more than 5%
of a task’s questions, we consider that the model failed on that task. The testing proce‐
dure is found in the test_babi.py file.

After training the model for about 500,000 iterations (caution, it takes a long time!),
we can see that it’s performing pretty well on most of the tasks. At the same time, it’s

Teaching a DNC to Read and Comprehend | 243

performing badly on more difficult tasks like path-finding, where the task is to answer
questions about how to get from one place to another. The following report compares
our model’s results to the mean values reported in the original DNC paper:

Task Result Paper's Mean

single supporting fact 0.00% 9.0±12.6%
two supporting facts 11.88% 39.2±20.5%
three supporting facts 27.80% 39.6±16.4%
two arg relations 1.40% 0.4±0.7%
three arg relations 1.70% 1.5±1.0%
yes no questions 0.50% 6.9±7.5%
counting 4.90% 9.8±7.0%
lists sets 2.10% 5.5±5.9%
simple negation 0.80% 7.7±8.3%
indefinite knowledge 1.70% 9.6±11.4%
basic coreference 0.10% 3.3±5.7%
conjunction 0.00% 5.0±6.3%
compound coreference 0.40% 3.1±3.6%
time reasoning 11.80% 11.0±7.5%
basic deduction 45.44% 27.2±20.1%
basic induction 56.43% 53.6±1.9%
positional reasoning 39.02% 32.4±8.0%
size reasoning 8.68% 4.2±1.8%
path finding 98.21% 64.6±37.4%
agents motivations 2.71% 0.0±0.1%

Mean Err. 15.78% 16.7±7.6%
Failed (err. > 5%) 8 11.2±5.4

Summary
In this chapter, we’ve explored the cutting edge of deep learning research with NTMs
and DNCs, culminating with the implementation of a model that can solve an
involved reading comprehension task.

In the final chapter of this book, we’ll begin to explore a very different space of prob‐
lems known as reinforcement learning. We’ll build an intuition for this new class of
tasks and develop an algorithmic foundation to tackle these problems using the deep
learning tools we’ve developed thus far.

244 | Chapter 8: Memory Augmented Neural Networks

1 http://nicklocascio.com/
2 Mnih, Volodymyr, et al. “Human-level control through deep reinforcement learning.” Nature 518.7540 (2015):

529-533.

CHAPTER 9

Deep Reinforcement Learning

Nicholas Locascio1

In this chapter, we’ll discuss reinforcement learning, which is a branch of machine
learning that deals with learning via interaction and feedback. Reinforcement learn‐
ing is essential to building agents that can not only perceive and interpret the world,
but also take action and interact with it. We will discuss how to incorporate deep neu‐
ral networks into the framework of reinforcement learning and discuss recent advan‐
ces and improvements in this field.

Deep Reinforcement Learning Masters Atari Games
The application of deep neural networks to reinforcement learning had a major
breakthrough in 2014, when the London startup DeepMind astonished the machine
learning community by unveiling a deep neural network that could learn to play Atari
games with superhuman skill. This network, termed a Deep Q-Network (DQN) was
the first large-scale successful application of reinforcement learning with deep neural
networks. DQN was so remarkable because the same architecture, without any
changes, was capable of learning 49 different Atari games, despite each game having
different rules, goals, and gameplay structure. To accomplish this feat, DeepMind
brought together many traditional ideas in reinforcement learning while also devel‐
oping a few novel techniques that proved key to DQN’s success. Later in this chapter
we will implement DQN, as it is described in the Nature paper “Human-level control
through deep reinforcement learning.”2 But first, let’s take a dive into reinforcement
learning (Figure 9-1).

245

http://nicklocascio.com/

3 Brockman, Greg, et al. “OpenAI Gym.” arXiv preprint arXiv:1606.01540 (2016). https://gym.openai.com/

Figure 9-1. A deep reinforcement learning agent playing Breakout. This image is from
the OpenAI Gym3 DQN agent that we build in this chapter.

246 | Chapter 9: Deep Reinforcement Learning

What Is Reinforcement Learning?
Reinforcement learning, at its essentials, is learning by interacting with an environ‐
ment. This learning process involves an actor, an environment, and a reward signal.
The actor chooses to take an action in the environment, for which the actor is rewar‐
ded accordingly. The way in which an actor chooses actions is called a policy. The
actor wants to increase the reward it receives, and so must learn an optimal policy for
interacting with the environment (Figure 9-2).

Figure 9-2. Reinforcement learning setup

Reinforcement learning is different from the other types of learning that we have cov‐
ered thus far. In traditional supervised learning, we are given data and labels, and are
tasked with predicting labels given data. In unsupervised learning, we are given just
data and are tasked with discovering underlying structure in this data. In reinforce‐
ment learning, we are given neither data nor labels. Our learning signal is derived
from the rewards given to the agent by the environment.

Reinforcement learning is exciting to many in the artificial intelligence community
because it is a general-purpose framework for creating intelligent agents. Given an
environment and some rewards, the agent learns to interact with that environment to
maximize its total reward. This type of learning is more in line with how humans
develop. Yes, we can build a pretty good model to classify dogs from cats with
extremely high accuracy by training on thousands of images. But you won’t find this
approach used in any elementary schools. Humans interact with their environment to
learn representations of the world which they can use to make decisions.

Furthermore, reinforcement learning applications are at the forefront of many
cutting-edge technologies including self-driving cars, robotic motor control, game
playing, air-conditioning control, ad-placement optimization, and stock market trad‐
ing strategies.

What Is Reinforcement Learning? | 247

As an illustrative exercise, we’ll be tackling a simple reinforcement learning and con‐
trol problem called pole-balancing. In this problem, there is a cart with a pole that is
connected by a hinge, so the pole can swing around the cart. There is an agent that
can control the cart, moving it left or right. There is an environment, which rewards
the agent when the pole is pointed upward, and penalizes the agent when the pole
falls over (Figure 9-3).

Figure 9-3. A simple reinforcement learning agent balancing a pole. This image is from
our OpenAI Gym Policy Gradient agent that we build in this chapter.

Markov Decision Processes (MDP)
Our pole-balancing example has a few important elements, which we formalize as a
Markov Decision Process (MDP). These elements are:

State
The cart has a range of possible places on the x-plane where it can be. Simi‐
larly, the pole has a range of possible angles.

Action
The agent can take action by moving the cart either left or right.

State Transition
When the agent acts, the environment changes—the cart moves and the pole
changes angle and velocity.

Reward
If an agent balances the pole well, it receives a positive reward. If the pole falls,
the agent receives a negative reward.

An MDP is defined as the following:

• S, a finite set of possible states
• A, a finite set of actions
• P r, s′ s, a , a state transition function
• R, reward function

248 | Chapter 9: Deep Reinforcement Learning

MDPs offer a mathematical framework for modeling decision-making in a given
environment (Figure 9-4).

Figure 9-4. An example of an MDP. Blue circles represent the states of the environment.
Red diamonds represent actions that can be taken. The edges from diamonds to circles
represent the transition from one state to the next. The numbers along these edges repre‐
sent the probability of taking a certain action. The numbers at the end of the green
arrows represent the reward given to the agent for making the given transition.

As an agent takes action in an MDP framework, it forms an episode. An episode con‐
sists of series of tuples of states, actions, and rewards. Episodes run until the environ‐
ment reaches a terminal state, like the “Game Over” screen in Atari games, or when
the pole hits the ground in our pole-cart example. The following equation shows the
variables in an episode:

 s0, a0, r0 , s1, a1, r1 , . . . sn, an, rn

In pole-cart, our environment state can be a tuple of the position of the cart and the
angle of the pole, like so: (xcart, θpole).

Policy
MDP’s aim is to find an optimal policy for our agent. Policies are the way in which
our agent acts based on its current state. Formally, policies can be represented as a
function π that chooses the action a that the agent will take in state s.

The objective of our MDP is to find a policy to maximize the expected future return:

Markov Decision Processes (MDP) | 249

 maxπ E R0 + R1 + . . . Rt π

In this objective, R represents the future return of each episode. Let’s define exactly
what future return means.

Future Return
Future return is how we consider the rewards of the future. Choosing the best action
requires consideration of not only the immediate effects of that action, but also the
long-term consequences. Sometimes the best action actually has a negative immedi‐
ate effect, but a better long-term result. For example, a mountain-climbing agent that
is rewarded by its altitude may actually have to climb downhill to reach a better path
to the mountain’s peak.

Therefore, we want our agents to optimize for future return. In order to do that, the
agent must consider the future consequences of its actions. For example, in a game of
Pong, the agent receives a reward when the ball passes into the opponent’s goal. How‐
ever, the actions responsible for this reward (the inputs that position the racquet to
strike scoring hit) happen many time steps before the reward is received. The reward
for each of those actions is delayed.

We can incorporate delayed rewards into our overall reward signal by constructing a
return for each time step that takes into account future rewards as well as immediate
rewards. A naive approach for calculating future return for a time step may be a sim‐
ple sum like so:

 Rt = ∑k = 0
T rt + k

We can calculate all returns, R, where R = R0, R1, . . . Ri, . . . Rn with the following
code:

def calculate_naive_returns(rewards):
""" Calculates a list of naive returns given a
 list of rewards."""
 total_returns = np.zeros(len(rewards))
 total_return = 0.0
 for t in range(len(rewards), 0):
 total_return = total_return + reward
 total_returns[t] = total_return
 return total_returns

This naive approach successfully incorporates future rewards so the agent can learn
an optimal global policy. This approach values future rewards equally to immediate
rewards. However, this equal consideration of all rewards is problematic. With infin‐
ite time steps, this expression can diverge to infinity, so we must to find a way to
bound it. Furthermore, with equal consideration at each time step, the agent can opti‐
mize for a very future reward, and we would learn a policy that lacks any sense of
urgency or time sensitivity in pursuing its rewards.

250 | Chapter 9: Deep Reinforcement Learning

Instead, we should value future rewards slightly less in order to force our agents to
learn to get rewards quickly. We accomplish this with a strategy called discounted
future return.

Discounted Future Return
To implement discounted future return, we scale the reward of a current state by the
discount factor, γ, to the power of the current time step. In this way, we penalize
agents that take many actions before receiving positive reward. Discounted rewards
bias our agent to prefer receiving reward in immediate future, which is advantageous
to learning a good policy. We can express the reward as follows:

 Rt = ∑k = 0
T γtrt + k + 1

The discount factor, γ, represents the level of discounting we want to achieve and can
be between 0 and 1. High γ means little discounting, low γ provides much discount‐
ing. A typical γ hyperparameter setting is between 0.99 and 0.97.

We can implement discounted return like so:

def discount_rewards(rewards, gamma=0.98):
 discounted_returns = [0 for _ in rewards]
 discounted_returns[-1] = rewards[-1]
 for t in range(len(rewards)-2, -1, -1): # iterate backwards
 discounted_returns[t] = rewards[t] +
 discounted_returns[t+1]*gamma
 return discounted_returns

Explore Versus Exploit
Reinforcement learning is fundamentally a trial-and-error process. In such a frame‐
work, an agent afraid to make mistakes can prove to be highly problematic. Consider
the following scenario. A mouse is placed in the maze shown in Figure 9-5. Our agent
must control the mouse to maximize reward. If the mouse gets the water, it receives a
reward of +1; if the mouse reaches a poison container (red), it receives a reward of
-10; if the mouse gets the cheese, it receives a reward of +100. Upon receiving reward,
the episode is over. The optimal policy involves the mouse successfully navigating to
the cheese and eating it.

Explore Versus Exploit | 251

Figure 9-5. A predicament that many mice find themselves in

In the first episode, the mouse takes the left route, steps on a trap, and receives a -10
reward. In the second episode, the mouse avoids the left path, since it resulted in such
a negative reward, and drinks the water immediately to its right for a +1 reward. After
two episodes, it would seem that the mouse has found a good policy. It continues to
follow its learned policy on subsequent episodes and achieves the moderate +1
reward reliably. Since our agent utilizes a greedy strategy—always choosing the mod‐
el’s best action—it is stuck in a policy that is a local maximum.

To prevent such a situation, it may be useful for the agent to deviate from the model’s
recommendation and take a suboptimal action in order to explore more of the envi‐
ronment. So instead of taking the immediate right turn to exploit the environment to
get water and the reliable +1 reward, our agent may choose to take a left turn and
venture into more treacherous areas in search of a more optimal policy. Too much
exploration, and our agent fails to optimize any reward. Not enough exploration can
result in our agent getting stuck in local minimum. This balance of explore versus
exploit is crucial to learning a successful policy.

252 | Chapter 9: Deep Reinforcement Learning

�-Greedy
One strategy for balancing the explore-exploit dilemma is called e-Greedy. e-
Greedy is a simple strategy that involves making a choice at each step to either take
the agent’s top recommended action or take a random action. The probability that
the agent takes a random action is the value known as �:

We can implement �-Greedy like so:

def epsilon_greedy_action(action_distribution, epsilon=1e-1):
 if random.random() < epsilon:
 return np.argmax(np.random.random(
 action_distribution.shape))
 else:
 return np.argmax(action_distribution)

Annealed �-Greedy
When training a reinforcement learning model, oftentimes we want to do more
exploring in the beginning since our model knows little of the world. Later, once
our model has seen much of the environment and learned a good policy, we want
our agent to trust itself more to further optimize its policy. To accomplish this, we
cast aside the idea of a fixed �, and instead anneal it over time, having it start low
and increase by a factor after each training episode. Typical settings for annealed
e-Greedy scenarios include annealing from 0.99 to 0.1 over 10,000 scenarios. We
can implement annealing like so:

def epsilon_greedy_action_annealed(action_distribution,
 percentage,
 epsilon_start=1.0,
 epsilon_end=1e-2):
 annealed_epsilon = epsilon_start*(1.0-percentage) +
 epsilon_end*percentage
 if random.random() < annealed_epsilon:
 return np.argmax(np.random.random(
 action_distribution.shape))
 else:
 return np.argmax(action_distribution)

Policy Versus Value Learning
So far we’ve defined the setup of reinforcement learning, discussed discounted future
return, and looked at the trade-offs of explore versus exploit. What we haven’t talked
about is how we’re actually going to teach an agent to maximize its
reward. Approaches to this fall into two broad categories: policy learning and value
learning. In policy learning, we are directly learning a policy that maximizes reward.
In value learning, we are learning the value of every state + action pair. If you were
trying to learn to ride a bike, a policy learning approach would be to think about how

Policy Versus Value Learning | 253

4 Sutton, Richard S., et al. “Policy Gradient Methods for Reinforcement Learning with Function Approxima‐
tion.” NIPS. Vol. 99. 1999.

pushing on the right pedal while you were falling to the left would course-correct
you. If you were trying to learn to ride a bike with a value learning approach, you
would assign a score to different bike orientations and actions you can take in those
positions. We’ll be covering both in this chapter, so let’s start with policy learning.

Policy Learning via Policy Gradients
In typical supervised learning, we can use stochastic gradient descent to update our
parameters to minimize the loss computed from our network’s output and the true
label. We are optimizing the expression:

 arg minθ ∑i log p yi ∣ xi; θ

In reinforcement learning, we don’t have a true label, only reward signals. However,
we can still use SGD to optimize our weights using something called policy gradients.4

We can use the actions the agent takes, and the returns associated with those actions,
to encourage our model weights to take good actions that lead to high reward, and to
avoid bad ones that lead to low reward. The expression we optimize for is:

 arg minθ − ∑i Ri log p yi ∣ xi; θ

where y_i is the action taken by the agent at time step t and where Ri is our discoun‐
ted future return. A In this way, we scale our loss by the value of our return, so if the
model chose an action that led to negative return, this would lead to greater loss. Fur‐
thermore, if the model is very confident in that bad decision, it would get penalized
even more, since we are taking into account the log probability of the model choosing
that action. With our loss function defined, we can apply SGD to minimize our loss
and learn a good policy.

Pole-Cart with Policy Gradients
We’re going to implement a policy-gradient agent to solve pole-cart, a classic rein‐
forcement learning problem. We will be using an environment from the OpenAi Gym
created just for this task.

OpenAI Gym
The OpenAI Gym is a Python toolkit for developing reinforcement agents. OpenAI
Gym provides an easy-to-use interface for interacting with a variety of environments.
It contains over 100 open-source implementations of common reinforcement learn‐
ing environments. OpenAI Gym speeds up development of reinforcement learning

254 | Chapter 9: Deep Reinforcement Learning

agents by handling everything on the environment simulation side, allowing
researchers to focus on their agent and learning algorithms. Another benefit of
OpenAI Gym is that researchers can fairly compare and evaluate their results with
others because they can all use the same standardized environment for a task. We’ll be
using the pole-cart environment from OpenAI Gym to create an agent that can easily
interact with this environment.

Creating an Agent
To create an agent that can interact with an OpenAI environment, we’ll define a class
PGAgent, which will contain our model architecture, model weights, and hyperpara‐
meters:

class PGAgent(object):

 def __init__(self, session, state_size, num_actions,
 hidden_size, learning_rate=1e-3,
 explore_exploit_setting=
 'epsilon_greedy_annealed_1.0->0.001'):
 self.session = session
 self.state_size = state_size
 self.num_actions = num_actions
 self.hidden_size = hidden_size
 self.learning_rate = learning_rate
 self.explore_exploit_setting = explore_exploit_setting

 self.build_model()
 self.build_training()

 def build_model(self):
 with tf.variable_scope('pg-model'):
 self.state = tf.placeholder(
 shape=[None, self.state_size],
 dtype=tf.float32)
 self.h0 = slim.fully_connected(self.state,
 self.hidden_size)
 self.h1 = slim.fully_connected(self.h0,
 self.hidden_size)
 self.output = slim.fully_connected(
 self.h1, self.num_actions,
 activation_fn=tf.nn.softmax)
 # self.output = slim.fully_connected(self.h1,
 self.num_actions)

 def build_training(self):
 self.action_input = tf.placeholder(tf.int32,
 shape=[None])
 self.reward_input = tf.placeholder(tf.float32,
 shape=[None])

Pole-Cart with Policy Gradients | 255

 # Select the logits related to the action taken
 self.output_index_for_actions = (tf.range(
 0, tf.shape(self.output)[0]) *
 tf.shape(self.output)[1]) +
 self.action_input
 self.logits_for_actions = tf.gather(
 tf.reshape(self.output, [-1]),
 self.output_index_for_actions)

 self.loss = - \
 tf.reduce_mean(tf.log(self.logits_for_actions) *
 self.reward_input)

 self.optimizer = tf.train.AdamOptimizer(
 learning_rate=self.learning_rate)
 self.train_step = self.optimizer.minimize(self.loss)

 def sample_action_from_distribution(
 self, action_distribution,
 epsilon_percentage):
 # Choose an action based on the action probability
 # distribution and an explore vs exploit
 if self.explore_exploit_setting == 'greedy':
 action = greedy_action(action_distribution)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_0.05':
 action = epsilon_greedy_action(action_distribution,
 0.05)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_0.25':
 action = epsilon_greedy_action(action_distribution,
 0.25)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_0.50':
 action = epsilon_greedy_action(action_distribution,
 0.50)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_0.90':
 action = epsilon_greedy_action(action_distribution,
 0.90)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_annealed_1.0->0.001':
 action = epsilon_greedy_action_annealed(
 action_distribution, epsilon_percentage, 1.0,
 0.001)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_annealed_0.5->0.001':
 action = epsilon_greedy_action_annealed(
 action_distribution, epsilon_percentage, 0.5,
 0.001)
 elif self.explore_exploit_setting ==
 'epsilon_greedy_annealed_0.25->0.001':

256 | Chapter 9: Deep Reinforcement Learning

 action = epsilon_greedy_action_annealed(
 action_distribution, epsilon_percentage, 0.25,
 0.001)

 return action

 def predict_action(self, state, epsilon_percentage):
 action_distribution = self.session.run(
 self.output, feed_dict={self.state: [state]})[0]
 action = self.sample_action_from_distribution(
 action_distribution, epsilon_percentage)
 return action

Building the Model and Optimizer
Lets break down some important functions. In build_model() , we define our model
architecture as a three-layer neural network. The model returns a layer of three
nodes, each representing the model’s action probability distribution. In build_train
ing(), we implement our policy gradient optimizer. We express our objective loss as
we talked about, scaling the model’s prediction probability for an action with the
return received for taking that action, and summing these all up to form a minibatch.
With our objective defined, we can use tf.AdamOptimizer, which will adjust our
weights according to the gradient to minimize our loss.

Sampling Actions
We define the predict_action function, which samples an action based on the mod‐
el’s action probability distribution output. We support the various sampling strategies
that we talked about to balance explore versus exploit, including greedy, epsilon
greedy, and epsilon greedy annealing.

Keeping Track of History
We’ll be aggregating our gradients from multiple episode runs, so it will be useful to
keep track of state, action, and reward tuples. To this end, we implement an episode
history and memory:

class EpisodeHistory(object):

 def __init__(self):
 self.states = []
 self.actions = []
 self.rewards = []
 self.state_primes = []
 self.discounted_returns = []

 def add_to_history(self, state, action, reward,
 state_prime):

Pole-Cart with Policy Gradients | 257

 self.states.append(state)
 self.actions.append(action)
 self.rewards.append(reward)
 self.state_primes.append(state_prime)

class Memory(object):

 def __init__(self):
 self.states = []
 self.actions = []
 self.rewards = []
 self.state_primes = []
 self.discounted_returns = []

 def reset_memory(self):
 self.states = []
 self.actions = []
 self.rewards = []
 self.state_primes = []
 self.discounted_returns = []

 def add_episode(self, episode):
 self.states += episode.states
 self.actions += episode.actions
 self.rewards += episode.rewards
 self.discounted_returns += episode.discounted_returns

Policy Gradient Main Function
Lets put this all together in our main function, which will create an OpenAI Gym
environment for CartPole, make an instance of our agent, and have our agent interact
with and train on the CartPole environment:

def main(argv):
 # Configure Settings
 total_episodes = 5000
 total_steps_max = 10000
 epsilon_stop = 3000
 train_frequency = 8
 max_episode_length = 500
 render_start = -1
 should_render = False

 explore_exploit_setting =
 'epsilon_greedy_annealed_1.0->0.001'

 env = gym.make('CartPole-v0')
 state_size = env.observation_space.shape[0] # 4 for
 # CartPole-v0
 num_actions = env.action_space.n # 2 for CartPole-v0

258 | Chapter 9: Deep Reinforcement Learning

 solved = False
 with tf.Session() as session:
 agent = PGAgent(session=session, state_size=state_size,
 num_actions=num_actions,
 hidden_size=16,
 explore_exploit_setting=
 explore_exploit_setting)
 session.run(tf.global_variables_initializer())

 episode_rewards = []
 batch_losses = []

 global_memory = Memory()
 steps = 0
 for i in tqdm.tqdm(range(total_episodes)):
 state = env.reset()
 episode_reward = 0.0
 episode_history = EpisodeHistory()
 epsilon_percentage = float(min(i/float(
 epsilon_stop), 1.0))
 for j in range(max_episode_length):
 action = agent.predict_action(state,
 epsilon_percentage)

 state_prime, reward, terminal, _ =
 env.step(action)
 if (render_start > 0 and i >
 render_start and should_render) \
 or (solved and should_render):
 env.render()
 episode_history.add_to_history(
 state, action, reward, state_prime)
 state = state_prime
 episode_reward += reward
 steps += 1
 if terminal:
 episode_history.discounted_returns =
 discount_rewards(
 episode_history.rewards)
 global_memory.add_episode(
 episode_history)

 if np.mod(i, train_frequency) == 0:
 feed_dict = {
 agent.reward_input: np.array(
 global_memory.discounted_returns),
 agent.action_input: np.array(
 global_memory.actions),
 agent.state: np.array(
 global_memory.states)}
 _, batch_loss = session.run(

Pole-Cart with Policy Gradients | 259

 [agent.train_step, agent.loss],
 feed_dict=feed_dict)
 batch_losses.append(batch_loss)
 global_memory.reset_memory()

 episode_rewards.append(episode_reward)
 break

 if i % 10:
 if np.mean(episode_rewards[:-100]) >
 100.0:
 solved = True
 else:
 solved = False

This code will train a CartPole agent to successfully and consistently balance the pole.

PGAgent Performance on Pole-Cart
Figure 9-6 is a chart of the average reward of our agent at each step of training. We
try out 8 different sampling methods, and achieve best results with epsilon greedy
annealing from 1.0 to 0.001.

Figure 9-6. Explore-exploit configurations affect how fast and how well learning occurs

260 | Chapter 9: Deep Reinforcement Learning

Notice how, across the board, standard epsilon greedy does very poorly. Lets talk
about why this might be. With a high epsilon set to 0.9, we are taking a random
action 90% of the time. Even if the model learns to execute the perfect actions, we’ll
still only be using these 10% of the time. On the other end, with a low epsilon of 0.05,
we are taking what our model believes to be optimal actions the vast majority of the
time. This performance is a bit better, but gets stuck in a local reward minimum
because it lacks the ability to explore other strategies. So neither epsilon greedy of
0.05 nor 0.9 gives us great results. The former places too much emphasis on explora‐
tion, and the latter, too little. This is why epsilon annealing is such a powerful sam‐
pling strategy. It allows the model to explore early and exploit late, which is crucial to
learning good policies.

Q-Learning and Deep Q-Networks
Q-learning is in the category of reinforcement learning called value-learning. Instead
of directly learning a policy, we will be learning the value of states and actions. Q-
learning involves learning a function, a Q-function, which represents the quality of a
state, action pair. The Q-function, defined Q(s, a), is a function that calculates the
maximum discounted future return when action a is performed in state s.

The Q-value represents our expected long-term rewards, given we are at a state, and
take an action, and then take every subsequent action perfectly (to maximize
expected future reward). This can be expressed formally as:

 Q* st, at = maxπE ∑i = t
T γiri

A question you may be asking is, how can we know Q-values? It is difficult, even for
humans, to know how good an action is, because you need to know how you are
going to act in the future. Our expected future returns depend on what our long-term
strategy is going to be. This seems to be a bit of a chicken-and-egg problem. In order
to value a state, action pair you need to know all the perfect subsequent actions. And
in order to know the best actions, you need to have accurate values for a state and
action.

The Bellman Equation
We solve this dilemma by defining our Q-values as a function of future Q-values.
This relation is called the Bellman equation, and it states that the maximum future
reward for taking action is the current reward plus the next step’s max future reward
from taking the next action a’:

 Q* st, at = E rt + γ maxa′ Q* st + 1, a′

This recursive definition allows us to relate between Q-values.

Q-Learning and Deep Q-Networks | 261

And since we can now relate between Q-values past and future, this equation conven‐
iently defines an update rule. Namely, we can update past Q-values to be based on
future Q-values. This is powerful because there exists a Q-value we know is correct:
the Q-value of the very last action before the episode is over. For this last state, we
know exactly that the next action led to the next reward, so we can perfectly set the
Q-values for that state. We can use the update rule, then, to propagate that Q-value to
the previous time step:

 Q j Q j + 1 Q j + 2 . . . Q*

This updating of the Q-value is known as value iteration.

Our first Q-value starts out completely wrong, but this is perfectly acceptable. With
each iteration, we can update our Q-value via the correct one from the future. After
one iteration, the last Q-value is accurate, since it is just the reward from the last state
and action before episode termination. Then we perform our Q-value update, which
sets the second-to-last Q-value. In our next iteration, we can guarantee that the last
two Q-values are correct, and so on and so forth. Through value iteration, we will be
guaranteed convergence on the ultimate optimal Q-value.

Issues with Value Iteration
Value iteration produces a mapping between state and action pairs with correspond‐
ing Q-values, and we are constructing a table of these mappings, or a Q-table. Lets
briefly talk about the size of this Q-table. Value iteration is an exhaustive process that
requires a full traversal of the entire space of state, action pairs. In a game like Break‐
out, with 100 bricks that can be either present or not, with 50 positions for the paddle
to be in, and 250 positions for the ball to be in, and 3 actions, we have already con‐
structed a space that is far, far larger than the sum of all computational capacity of
humanity. Furthermore, in stochastic environments, the space of our Q-table would
be even larger, and possibly infinite. With such a large space, it will be intractable for
us to find all of the Q-values for every state, action pair. Clearly this approach is not
going to work. How else are we going to do Q-learning?

Approximating the Q-Function
The size of our Q-table makes the naive approach intractable for any nontoy prob‐
lem. However, what if we relax our requirement for an optimal Q-function? If
instead, we learn approximations of the Q-function, we can use a model to estimate
our Q-function. Instead of having to experience every state, action pair to update our
Q-table, we can learn a function that approximates this table, and even generalizes
outside of its own experience. This means we won’t have to perform an exhaustive
search through all possible Q-values to learn a Q-function.

262 | Chapter 9: Deep Reinforcement Learning

Deep Q-Network (DQN)
This was the main motivation behind DeepMind’s work on Deep Q-Network
(DQN). DQN uses a deep neural network that takes an image (the state) in to esti‐
mate the Q-value for all possible actions.

Training DQN
We would like to train our network to approximate the Q-function. We express this
Q-function approximation as a function of our model’s parameters, like this:

 Qθ s, a ∣ θ ∼ Q* s, a

Remember, Q-learning is a value-learning algorithm. We are not learning a policy
directly, but rather we are learning the values of each state, action pair, regardless if
they are good or not. We have expressed our model’s Q-function approximation as
Qtheta, and we would like this to be close to the future expected reward. Using the
Bellman Equation from earlier, we can express this future expected reward as:

 Rt* = rt + γ maxa′ Q st + 1, a′ θ

Our objective is to minimize the difference between our Q’s approximation, and the
next Q value:

 minθ ∑e ∈ E ∑t = 0
T Q st, at θ − Rt*

Expanding this expression gives us our full objective:

 minθ ∑e ∈ E ∑t = 0
T Q st, at θ − rt + γ maxa′ Q st + 1, a′ θ

This objective is fully differentiable as a function of our model parameters, and we
can find gradients to use in stochastic gradient descent to minimize this loss.

Learning Stability
One issue you may have noticed is that we are defining our loss function based on the
difference of our model’s predicted Q-value of this step and the predicted Q-value of
the next step. In this way our loss is doubly dependent on our model parameters.
With each parameter update, the Q-values are constantly shifting, and we are using
shifting Q-values to do further updates. This high correlation of updates can lead to
feedback loops and instability in our learning where our parameters may oscillate and
make the loss diverge.

We can employ a couple of simple engineering hacks to remedy this correlation prob‐
lem; namely, target Q-network and experience replay.

Q-Learning and Deep Q-Networks | 263

Target Q-Network
Instead of updating a single network frequently with respect to itself, we can reduce
this codependence by introducing a second network, called the target network. Our
loss function features to instances of the Q-function, Q st, at θ and Q st + 1, a′ θ .
We are going to have the first Q be represented as our prediction network, and our
second Q will be produced by the target Q-network. The target Q-network is a copy
of our prediction network that lags in its parameter updates. We only update the tar‐
get Q-network to equal the prediction network every few batches. This provides
much needed stability to our Q-values, and we can now properly learn a good Q-
function.

Experience Replay
There is yet another source of irksome instability to our learning: the high correla‐
tions of recent experiences. If we train our DQN with batches drawn from recent
experience, these action, state pairs are all going to be related to one another. This is
harmful because we want our batch gradients to be representative of the entire gradi‐
ent, and if our data is not representative of the data distribution, our batch gradient
will not be an accurate estimate of the true gradient.

So we have to break up this correlation of data in our batches. We can do this using
something called experience replay. In experience replay, we store all of the agent’s
experiences as a table, and to construct a batch, we randomly sample from these
experience. We store these experiences in a table as si, ai, ri, si + 1 tuples. From these
four values, we can compute our loss function, and thus our gradient to optimize our
network.

This experience replay table is more of a queue than a table. The experiences an agent
sees early in training may not be representative of the experiences a trained agent
finds itself in later, so it is useful to remove very old experiences from our table.

From Q-Function to Policy
Q-learning is a value learning paradigm, not a policy learning algorithm. This means
we are not directly learning a policy for acting in our environment. But can’t we con‐
struct a policy from what our Q-function tells us? If we have learned a good Q-
function approximation, this means we know the value of every action for every state.
We could then trivially construct an optimal policy in the following way: look at our
Q-function for all actions in our current state, choose the action with the max Q-
value, enter a new state, and repeat. If our Q-function is optimal, our policy derived
from it will be optimal. With this in mind, we can express the optimal policy as fol‐
lows:

264 | Chapter 9: Deep Reinforcement Learning

 π s; θ = arg maxa′ Q* s, a′; θ

We can also use the sampling techniques we discussed earlier to make a stochastic
policy that sometime deviates from the Q-function recommendations to vary the
amount of exploration our agent does.

DQN and the Markov Assumption
DQN is still a Markov decision process that relies on the Markov assumption, which
assumes that the next state s_i+1 depends only on the current state s_i and action a_i,
and not on any previous states or actions. This assumption doesn’t hold true for many
environments where the game’s state cannot be summed up in a single frame. For
example, in Pong, the ball’s velocity (an important factor in successful gameplay) is
not captured in any single game frame. The Markov assumption makes modeling
decision processes much simpler and reliable, but often at a loss of modeling power.

DQN’s Solution to the Markov Assumption
DQN solves this problem by utilizing state history. Instead of processing one game
frame as the game’s state, DQN considers the past four game frames as the game’s
current state. This allows DQN to utilize time-dependent information. This is a bit of
an engineering hack, and we will discuss better ways of dealing with sequences of
states at the end of this chapter.

Playing Breakout wth DQN
Lets pull all of what we learned together and actually go about implementing DQN to
play Breakout. First we start out by defining our DQNAgent:

DQNAgent

class DQNAgent(object):

 def __init__(self, session, num_actions,
 learning_rate=1e-3, history_length=4,
 screen_height=84, screen_width=84,
 gamma=0.98):
 self.session = session
 self.num_actions = num_actions
 self.learning_rate = learning_rate
 self.history_length = history_length
 self.screen_height = screen_height
 self.screen_width = screen_width
 self.gamma = gamma

 self.build_prediction_network()
 self.build_target_network()
 self.build_training()

Q-Learning and Deep Q-Networks | 265

 def build_prediction_network(self):
 with tf.variable_scope('pred_network'):
 self.s_t = tf.placeholder('float32', shape=[
 None,
 self.history_length,
 self.screen_height,
 self.screen_width],
 name='state')
 self.conv_0 = slim.conv2d(self.s_t, 32, 8, 4,
 scope='conv_0')
 self.conv_1 = slim.conv2d(self.conv_0, 64, 4, 2,
 scope='conv_1')
 self.conv_2 = slim.conv2d(self.conv_1, 64, 3, 1,
 scope='conv_2')

 shape = self.conv_2.get_shape().as_list()

 self.flattened = tf.reshape(
 self.conv_2, [-1, shape[1]*shape[2]*shape[3]])
 self.fc_0 = slim.fully_connected(self.flattened,
 512, scope='fc_0')
 self.q_t = slim.fully_connected(
 self.fc_0, self.num_actions, activation_fn=None,
 scope='q_values')

 self.q_action = tf.argmax(self.q_t, dimension=1)

 def build_target_network(self):
 with tf.variable_scope('target_network'):
 self.target_s_t = tf.placeholder('float32',
 shape=[None, self.history_length,
 self.screen_height, self.screen_width],
 name='state')
 self.target_conv_0 = slim.conv2d(
 self.target_s_t, 32, 8, 4, scope='conv_0')
 self.target_conv_1 = slim.conv2d(
 self.target_conv_0, 64, 4, 2, scope='conv_1')
 self.target_conv_2 = slim.conv2d(
 self.target_conv_1, 64, 3, 1, scope='conv_2')

 shape = self.conv_2.get_shape().as_list()

 self.target_flattened = tf.reshape(
 self.target_conv_2, [-1,
 shape[1]*shape[2]*shape[3]])
 self.target_fc_0 = slim.fully_connected(
 self.target_flattened, 512, scope='fc_0')
 self.target_q = slim.fully_connected(
 self.target_fc_0, self.num_actions,
 activation_fn=None, scope='q_values')

266 | Chapter 9: Deep Reinforcement Learning

 def update_target_q_weights(self):
 pred_vars = tf.get_collection(
 tf.GraphKeys.GLOBAL_VARIABLES, scope=
 'pred_network')
 target_vars = tf.get_collection(
 tf.GraphKeys.GLOBAL_VARIABLES, scope=
 'target_network')
 for target_var, pred_var in zip(target_vars, pred_vars):
 weight_input = tf.placeholder('float32',
 name='weight')
 target_var.assign(weight_input).eval(
 {weight_input: pred_var.eval()})

 def build_training(self):
 self.target_q_t = tf.placeholder('float32', [None],
 name='target_q_t')
 self.action = tf.placeholder('int64', [None],
 name='action')

 action_one_hot = tf.one_hot(
 self.action, self.num_actions, 1.0, 0.0,
 name='action_one_hot')
 q_of_action = tf.reduce_sum(
 self.q_t * action_one_hot, reduction_indices=1,
 name='q_of_action')

 self.delta = tf.square((self.target_q_t - q_of_action))
 self.loss = tf.reduce_mean(self.delta, name='loss')

 self.optimizer = tf.train.AdamOptimizer(
 learning_rate=self.learning_rate)
 self.train_step = self.optimizer.minimize(self.loss)

 def sample_action_from_distribution(self,
 action_distribution, epsilon_percentage):
 # Choose an action based on the action probability
 # distribution
 action = epsilon_greedy_action_annealed(
 action_distribution, epsilon_percentage)
 return action

 def predict_action(self, state, epsilon_percentage):
 action_distribution = self.session.run(
 self.q_t, feed_dict={self.s_t: [state]})[0]
 action = self.sample_action_from_distribution(
 action_distribution, epsilon_percentage)
 return action

 def process_state_into_stacked_frames(self, frame,
 past_frames, past_state=None):
 full_state = np.zeros(
 (self.history_length, self.screen_width,

Q-Learning and Deep Q-Networks | 267

 self.screen_height))

 if past_state is not None:
 for i in range(len(past_state)-1):
 full_state[i, :, :] = past_state[i+1,
 :, :]
 full_state[-1, :, :] = imresize(to_grayscale(frame),
 (self.screen_width,
 self.screen_height))
 /255.0
 else:
 all_frames = past_frames + [frame]
 for i, frame_f in enumerate(all_frames):
 full_state[i, :, :] = imresize(
 to_grayscale(frame_f), (self.screen_width,
 self.screen_height))/255.0
 full_state = full_state.astype('float32')
 return full_state

There is a lot going on in this class, so let’s break it down.

Building Our Architecture
We build our two Q-networks: the prediction network and the target Q-
network. Notice how they have the same architecture definition, since they are the
same network, with the target Q just having delayed parameter updates. Since we are
learning to play Breakout from pure pixel input, our game state is an array of pixels.
We pass this image through three convolution layers, and then two fully connected
layers to produce our Q-values for each of our potential actions.

Stacking Frames
You may notice that our state input is actually of size [None, self.history_length,
self.screen_height, self.screen_width]. Remember, in order to model and cap‐
ture time-dependent state variables like speed, DQN uses not just one image, but a
group of consecutive images, also known as a history. Each of these consecutive
images is treated as a separate channel. We construct these stacked frames with the
helper function process_state_into_stacked_frames(self, frame,

past_frames, past_state=None) .

Setting Up Training Operations
Our loss function is derived from our objective expression from earlier in this chap‐
ter:

 minθ ∑e ∈ E ∑t = 0
T Q st, at θ − rt + γ maxa′ Q st + 1, a′ θ

268 | Chapter 9: Deep Reinforcement Learning

We want our prediction network to equal our target network, plus the return at the
current time step. We can express this in pure TensorFlow code as the difference
between the output of our prediction network and the output of our target network.
We use this gradient to update and train our prediction network, using AdamOptim
izer.

Updating Our Target Q-Network
To ensure a stable learning environment, we only update our target Q-network once
every four batches. Our update rule for the target Q-network is pretty simple: we just
set its weights equal to the prediction network. We do this in the function
update_target_q_network(self). We can use tf.get_collection() to grab the
variables of the prediction and target network scopes. We can loop through these
variables and run the tf.assign() operation to set the target Q-network’s weights
equal to those of the prediction network.

Implementing Experience Replay
We’ve discussed how experience replay can help de-correlate our gradient batch
updates to improve our the quality of our Q-learning and subsequent derived policy.
Let’s walk though a simple implementation of experience replay. We expose a method
add_episode(self, episode) which takes an entire episode (an EpisodeHistory
object) and adds it to the ExperienceReplayTable. It then checks if the table is full and
removes the oldest experiences from the table.

When it comes time to sample from this table, we can call sample_batch(self,
batch_size) to randomly construct a batch from our table of experiences:

class ExperienceReplayTable(object):

 def __init__(self, table_size=5000):
 self.states = []
 self.actions = []
 self.rewards = []
 self.state_primes = []
 self.discounted_returns = []

 self.table_size = table_size

 def add_episode(self, episode):
 self.states += episode.states
 self.actions += episode.actions
 self.rewards += episode.rewards
 self.discounted_returns += episode.discounted_returns
 self.state_primes += episode.state_primes

 self.purge_old_experiences()

Q-Learning and Deep Q-Networks | 269

 def purge_old_experiences(self):
 if len(self.states) > self.table_size:
 self.states = self.states[-self.table_size:]
 self.actions = self.actions[-self.table_size:]
 self.rewards = self.rewards[-self.table_size:]
 self.discounted_returns = self.discounted_returns[
 -self.table_size:]
 self.state_primes = self.state_primes[
 -self.table_size:]

 def sample_batch(self, batch_size):
 s_t, action, reward, s_t_plus_1, terminal = [], [],
 [], [], []
 rands = np.arange(len(self.states))
 np.random.shuffle(rands)
 rands = rands[:batch_size]
 for r_i in rands:
 s_t.append(self.states[r_i])
 action.append(self.actions[r_i])
 reward.append(self.rewards[r_i])
 s_t_plus_1.append(self.state_primes[r_i])
 terminal.append(self.discounted_returns[r_i])
 return np.array(s_t), np.array(action),
 np.array(reward), np.array(s_t_plus_1),
 np.array(terminal)

DQN Main Loop
Let’s put this all together in our main function, which will create an OpenAI Gym
environment for Breakout, make an instance of our DQNAgent, and have our agent
interact with and train to play Breakout successfully:

def main(argv):
 # Configure Settings
 run_index = 0
 learn_start = 100
 scale = 10
 total_episodes = 500*scale
 epsilon_stop = 250*scale
 train_frequency = 4
 target_frequency = 16
 batch_size = 32
 max_episode_length = 1000
 render_start = total_episodes - 10
 should_render = True

 env = gym.make('Breakout-v0')
 num_actions = env.action_space.n

 solved = False
 with tf.Session() as session:
 agent = DQNAgent(session=session,

270 | Chapter 9: Deep Reinforcement Learning

 num_actions=num_actions)
 session.run(tf.global_variables_initializer())

 episode_rewards = []
 batch_losses = []

 replay_table = ExperienceReplayTable()
 global_step_counter = 0
 for i in tqdm.tqdm(range(total_episodes)):
 frame = env.reset()
 past_frames = [frame] * (agent.history_length-1)
 state = agent.process_state_into_stacked_frames(
 frame, past_frames, past_state=None)
 episode_reward = 0.0
 episode_history = EpisodeHistory()
 epsilon_percentage = float(min(i/float(
 epsilon_stop), 1.0))
 for j in range(max_episode_length):
 action = agent.predict_action(state,
 epsilon_percentage)
 if global_step_counter < learn_start:
 action = random_action(agent.num_actions)

 # print(action)
 frame_prime, reward, terminal, _ = env.step(
 action)
 state_prime =
 agent.process_state_into_stacked_frames(
 frame_prime, past_frames,
 past_state=state)

 past_frames.append(frame_prime)
 past_frames = past_frames[-4:]

 if (render_start > 0 and (i >
 render_start)
 and should_render) or (solved and
 should_render):
 env.render()
 episode_history.add_to_history(
 state, action, reward, state_prime)
 state = state_prime
 episode_reward += reward
 global_step_counter += 1
 if j == (max_episode_length - 1):
 terminal = True

 if terminal:
 episode_history.discounted_returns =
 discount_rewards(
 episode_history.rewards)
 replay_table.add_episode(episode_history)

Q-Learning and Deep Q-Networks | 271

 if global_step_counter > learn_start:
 if global_step_counter %
 train_frequency == 0:
 s_t, action, reward, s_t_plus_1,
 terminal = \
 replay_table.sample_batch(
 batch_size)
 q_t_plus_1 = agent.target_q.eval(
 {agent.target_s_t:
 s_t_plus_1})

 terminal = np.array(terminal) + 0.
 max_q_t_plus_1 = np.max(q_t_plus_1,
 axis=1)
 target_q_t = (1. - terminal) * \
 agent.gamma * max_q_t_plus_1 +
 reward

 _, q_t, loss = agent.session.run(
 [agent.train_step, agent.q_t,
 agent.loss], {
 agent.target_q_t: target_q_t,
 agent.action: action,
 agent.s_t: s_t
 })

 if global_step_counter %
 target_frequency == 0:
 agent.update_target_q_weights()

 episode_rewards.append(episode_reward)
 break

 if i % 50 == 0:
 ave_reward = np.mean(episode_rewards[-100:])
 print(ave_reward)
 if ave_reward > 50.0:
 solved = False
 else:
 solved = False

DQNAgent Results on Breakout
We train our DQNAgent for 1,000 episodes to see the learning curve. To obtain
superhuman results on Atari, typical training time runs up to several days. However,
we can see a general upward trend in reward pretty quickly, as shown in Figure 9-7.

272 | Chapter 9: Deep Reinforcement Learning

Figure 9-7. Our DQN agent gets increasingly better at Breakout during training as it
learns a good value function and also acts less stochastically due to epsilon-greedy
annealing

Improving and Moving Beyond DQN
DQN did a pretty good job back in 2013 in solving Atari tasks, but had some serious
shortcomings. DQN’s many weaknesses include that it takes very long to train,
doesn’t work well on certain types of games, and requires retraining for every new
game. Much of the deep reinforcement learning research of the past few years has
been in addressing these various weaknesses.

Deep Recurrent Q-Networks (DRQN)
Remember the Markov assumption? The one that states that the next state relies only
on the previous state and the action taken by the agent? DQN’s solution to the Mar‐
kov assumption problem, stacking four consecutive frames as separate channels, side‐
steps this issue and is a bit of an ad hoc engineering hack. Why four frames and not
10? This imposed frames history hyperparameter limits the model’s generality. How
do we deal with arbitrary sequences of related data? That’s right: we can use what we
learned back in Chapter 6 on recurrent neural networks to model sequences with
deep recurrent Q-networks (DRQN).

Improving and Moving Beyond DQN | 273

5 Sorokin, Ivan, et al. “Deep Attention Recurrent Q-Network.” arXiv preprint arXiv:1512.01693 (2015).
6 https://en.wikipedia.org/wiki/Doom_(1993_video_game)
7 https://en.wikipedia.org/wiki/Seaquest_(video_game)
8 Mnih, Volodymyr, et al. “Asynchronous methods for deep reinforcement learning.” International Conference

on Machine Learning. 2016.
9 Konda, Vijay R., and John N. Tsitsiklis. “Actor-Critic Algorithms.” NIPS. Vol. 13. 1999.

DRQN uses a recurrent layer to transfer a latent knowledge of state from one time
step to the next. In this way, the model itself can learn how many frames are informa‐
tive to include in its state and can even learn to throw away noninformative ones or
remember things from long ago.

DRQN has even been extended to include neural attention mechanism, as shown in
Sorokin et al.’s 2015 paper “Deep Attention Recurrent Q-Network” (DAQRN).5 Since
DRQN is dealing with sequences of data, it can attend to certain parts of the
sequence. This ability to attend to certain parts of the image both improves perfor‐
mance and provides model interpretability by producing a rationale for the action
taken.

DRQN has shown to be better than DQN at playing first-person shooter (FPS) games
like DOOM,6 as well as improving performance on certain Atari games with long
time-dependencies, like Seaquest.7

Asynchronous Advantage Actor-Critic Agent (A3C)
Asynchronous advantage actor-critic (A3C) is a new approach to deep reinforcement
learning introduced in the 2016 DeepMind paper “Asynchronous Methods for Deep
Reinforcement Learning.”8 Let’s discuss what it is and why it improves upon DQN.

A3C is asynchronous, which means we can parallelize our agent across many threads,
which means orders of magnitude faster training by speeding up our environment
simulation. A3C runs many environments at once to gather experiences. Beyond the
speed increase, this approach presents another significant advantage in that it further
decorrelates the experiences in our batches, because the batch is being filled with the
experiences of numerous agents in different scenarios simultaneously.

A3C uses an actor-critic9 method. Actor-critic methods involve learning both a value
function V st (the critic) and also a policy π st , (the actor). Early in this chapter, we
delineated two different approaches to reinforcement learning: value learning and
policy learning. A3C combines the strengths of each, using the critic’s value function
to improve the actor’s policy.

A3C uses an advantage function instead of a pure discounted future return. When
doing policy learning, we want to penalize the agent when it chooses an action that

274 | Chapter 9: Deep Reinforcement Learning

https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://en.wikipedia.org/wiki/Seaquest_(video_game)

10 Jaderberg, Max, et al. “Reinforcement Learning with Unsupervised Auxiliary Tasks.” arXiv preprint arXiv:
1611.05397 (2016).

leads to a bad reward. A3C aims to achieve this same goal, but uses advantage instead
of reward as its criterion. Advantage represents the difference between the model’s
prediction of the quality of the action taken versus the actual quality of the action
taken. We can express advantage as:

 At = Q* st, at − V st .

A3C has a value function, V(t), but it does not express a Q-function. Instead, A3C
estimates the advantage by using the discounted future reward as an approximation
for the Q-function:

 At = Rt − V st

These three techniques proved key to A3C’s takeover of most deep reinforcement
learning benchmarks. A3C agents can learn to play Atari Breakout in less than 12
hours, whereas DQN agents may take 3 to 4 days.

UNsupervised REinforcement and Auxiliary Learning (UNREAL)
UNREAL is an improvement on A3C introduced in “Reinforcement learning with
unsupervised auxiliary tasks” 10 by Jaderberg et al., who, you guessed it, are from
DeepMind.

UNREAL addresses the problem of reward sparsity. Reinforcement learning is so dif‐
ficult because our agent just receives rewards, and it is hard to determine exactly why
rewards increase or decrease, which makes learning difficult. Additionally, in rein‐
forcement learning, we must learn a good representation of the world as well as a
good policy to achieve reward. Doing all of this with a weak learning signal like
sparse rewards is quite a tall order.

UNREAL asks the question, what can we learn from the world without rewards, and
aims to learn a useful world representation in an unsupervised matter. Specifically,
UNREAL adds some additional unsupervised auxiliary tasks to its overall objective.

The first task involves the UNREAL agent learning about how its actions affect the
environment. The agent is tasked with controlling pixel values on the screen by tak‐
ing actions. To produce a set of pixel values in the next frame, the agent must take a
specific action in this frame. In this way, the agent learns how its actions affect the
world around it, enabling it to learn a representation of the world that takes into
account its own actions.

The second task involves the UNREAL agent learning reward prediction. Given a
sequence of states, the agent is tasked with predicting the value of the next reward

Improving and Moving Beyond DQN | 275

received. The intuition behind this is that if an agent can predict the next reward, it
probably has a pretty good model of the future state of the environment, which will
be useful when constructing a policy.

As a result of these unsupervised auxiliary tasks, UNREAL is able to learn around 10
times faster than A3C on the Labyrynth game environment. UNREAL highlights the
importance of learning good world representations and how unsupervised learning
can aid in weak learning signal or low-resource learning problems like reinforcement
learning.

Summary
In this chapter, we covered the fundamentals of reinforcement learning, including
MDP’s, maximum discounted future rewards, and explore versus exploit. We also
covered various approaches to deep reinforcement learning, including policy gradi‐
ents and Deep Q-Networks, and touched on some recent improvements on DQN and
new developments in deep reinforcement learning.

Reinforcement learning is essential to building agents that can not only perceive and
interpret the world, but also take action and interact with it. Deep reinforcement
learning has made major advancements toward this goal, successfully producing
agents capable of mastering Atari games, safely driving automobiles, trading stocks
profitably, controlling robots, and more.

276 | Chapter 9: Deep Reinforcement Learning

Index

A
acceleration, 74
Actor-Critic methods, 274
AdaDelta, 83
AdaGrad, 79-80
Adam optimization, 81, 83, 103, 109, 156, 257
add_episode(), 269
advantage function, 274
ae.decoder(), 133
ae.encoder(), 133
ae.evaluate(), 133
ae.loss(), 133
AlexNet, 88
allocation weighting, 229, 230, 237, 239-241
allow_soft_placement, 51
alpha, 68
annealed e-Greedy policy, 253, 260
approximate per-image whitening, 103
arc-standard system, 166
artificial neural networks (ANNs), 10
Asynchronous Advantage Actor-Critic (A3C),

274
Atari games, 245
attention, capturing, 191
attention-based memory access, 221-222
attention_decoder, 211-216
audio transciption (see part-of-speech (POS)

tagging)
autoencoders, 120-140

compared to principal component analysis
(PCA), 130-133

denoising, 134-137
implementing in TensorFlow, 121-133
sparsity in, 137-140

automating feature selection (see embeddings)
autoregressive decoding, 209

B
bAbI dataset, 242-217
backpropagation, 23-25, 177
batch gradient descent, 25
batch normalization, 104-109, 187
batch-major vectors, 198
batch_weights.append(), 198
beam search, 169-171
Bellman Equation, 261
beta, 68
bit tensor, 180
boosting, 87
Breakout, example with DQN, 265-273
Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm, 78
bucketing, 195-196
bucket_id, 197, 199, 201
build_model(), 255-257
build_training(), 255-257

C
Caffe, 40
CartPole environment, 258
CIFAR-10 challenge, 107-109
compression, 118

(see also embeddings)
computer vision (see convolutional neural net‐

works)
conjugate gradient descent, 77
content-based addressing, 223
context encoding, 140-143

277

context window, 156
Continuous Bag of Words (CBOW) model, 143
controller loop, 241
conv2d(), 102, 108, 109
convolutional filters, 113-115
convolutional neural networks (CNNs), 33,

85-115
architectures, 99-101
batch normalization and, 104-109
comparison with and without batch nor‐

malization, 107-109
convolutional layer, 95-98
creative filters for artistic styles, 113-114
filter hyperparameters, 95
filters and feature maps, 90-94
image analysis example, 101-103
image preprocessing, 103-103
learning visualization in, 109-112
max pooling layer in, 98-99
versus vanilla deep neural networks, 89-90

conv_batch_norm(), 105
corrupt placeholder, 136
create_model(), 205-206
critical points, 69
cross-entropy loss, 54, 171
CUDA Toolkit, 41
CUDA_HOME, 42
CUDNN Toolkit, 41
current_step, 199

D
data flows, 39
dataset preprocessing, 158-168
decode(), 201
decoder network, 189
decoder(), 122, 124
deep learning, defining, 1, 7
deep neural networks (DNNs)

optimization breakthroughs (see optimiza‐
tion breakthroughs)

performance of, 61
vanilla, 89-90

Deep Q-Network (DQN), 245, 263-273
experience replay, 264, 269
implementation example, 265-273
learning stability, 263-264
and Markov Assumption, 265
prediction network, 268, 269
state history and, 265

target network, 264, 268, 269
training, 263
weaknesses, 273

Deep Recurrent Q-Networks (DRQN), 273
deep reinforcement learning (see reinforcement

learning (RL))
DeepMind, 245

(see also Deep Q-Network (DQN))
delta rule, 21
denoising autoencoders, 134-137
dependency parsing, 164, 172
Differentiable Neural Computers (DNCs),

226-217
controller network, 232-234
implementing in TensorFlow, 237-242
interference-free writing in, 229-230
memory reuse, 230-231
operation visualization, 234-236
read head, 232
temporal information tracking, 231-232

Differential Neural Computers (DNCs)
dimensionality reduction

autoencoders and, 121-140
(see also autoencoders)

with principal component analysis (PCA),
118-120

discounted future return, 251
DQNAgent(), 265, 272
dropout, 36-37, 108

E
e-Greedy policy, 253
embeddings, 117-152

autoencoders and, 120-133
context and, 140-143
noise-contrastive estimation (NCE), 144
principal component analysis (PCA) and,

118-120
Word2Vec framework for, 143-151

embedding_attention_decoder, 210
embedding_layer(), 146, 186
encoder network, 189
encoder(), 124
end-of-sequence (EOS) token, 189
end-to-end-differentiable, 221
EpisodeHistory(), 257, 269
epochs, 31, 199
error derivative calculations, 23-25
error surface, 19, 25

278 | Index

critical points and saddle points, 69-71
effects of gradient direction, 71-74
flat regions in, 69-71
local minima and, 64-69

evaluate(), 56, 124
experience replay, 264, 269
ExperienceReplayTable(), 269
explore-exploit dilemma, 251-253

F
facial recognition, 86-89
feature maps, 92-93, 98
feature selection, 86-89

(see also embeddings)
feed-forward neural networks, 9-12

autoencoders in, 120-133
building in TensorFlow, 59-61
connections in, 174
initialization strategies, 61
and sequence analysis, 153, 173
training (see training neural networks)

feedforward_pos.py, 161
feed_dict, 48
feed_previous, 209
filters, 91-94

convolutional, 113-115
learned, 110-111

filter_summary(), 108
for loops, 237-242
forward_only flag, 205
fractional max pooling, 99
free list, 229
future return, 250-251

G
garden path sentences, 168
Gated Recurrent Unit (GRU), 184
gated weighting, 224
get_all, 160
get_batch(), 197, 199, 201, 202
global normalization, 171
Google SyntaxNet, 168-170
gradient descent (GD), 19-20, 33, 209

batch, 25
challenges of, 63-63
conjugate, 77
minibatch, 27, 64, 83
with nonlinear neurons, 22-23
stochastic (SGD), 26, 254, 263

gradient, defined, 20
Gram matrix, 113

H
Hessian matrix, 73-74, 77
hyperparameter optimization, 32
hyperparameters, 21

I
ill-conditioning, 73-74
image analysis (see convolutional neural net‐

works)
ImageNet challenge, 88-89
inference component, 67
initial_accumulator_value, 79
input volume, 95
input_word_data.py, 146
interpolation gate, 224
interpretability, 137-139
inverted dropout, 36

K
k-Sparse autoencoders , 140
keep gate, 179-181
Keras, 40
kernels, 45
Kullback–Leibler (KL) divergence, 140

L
L1 regularization, 35
L2 regularization, 34, 35
language translation, 189-216
layer-wise greedy pre-training, 63
LD_LIBRARY_PATH, 42
learning rate adaptations, 78-82

AdaGrad, 79-80
Adam optimization, 81-82
RMSProp, 80

learning rates, 21
LevelDB, 157, 159
leveldb.LevelDB(), 159
linear neurons, 12, 18-19
linear perceptrons, 5-6, 8
link matrix, 231
link matrix update, 237-239
local invariance, 99
local maximum, 252
local minima, 64

Index | 279

and model identifiability, 65-66
spurious, 66-69

local normalization, 171
logistic regression model

logging and training in TensorFlow, 55-57
specifying in TensorFlow, 53-55

log_device_placement, 51, 51
long short-term memory (LSTM) model

for sentiment analysis, 185-188
long short-term memory (LSTM) units,

178-183, 215
stacking, 182
unrolling through time, 182

lookup weighting, 229
loop(), 211
loss component, 67
low-dimensional representations, 117

(see also dimensionality reduction; embed‐
dings)

Lua, 40

M
machine learning

defining, 4
mechanics of, 3-7

manifold learning, 135
Markov Assumption, 265
Markov Decision Process (MDP), 248-251, 265
max norm constraints, 35
max pooling layer, 98-99
max_pool(), 101, 102, 109
mean_var_with_update(), 105
memory

access in NTMs, 223-226
attention weighting, 221-222

memory cells, 179
memory(), 257
mem_ops.py file, 237
minibatch gradient descent, 27, 64, 83
minibatches, 27, 54
minimal local information (see local minima)
model identifiability, 65-66
momentum-based optimization, 74-77
my_network(), 48, 49

N
Neon, 40
Nesterov momentum optimization, 77
neural n-gram strategy, 155

neural networks
artificial, 10
as vector and matrix operations, 12
complexity of models, 27-30
convolutional (see convolutional neural net‐

works)
feed-forward (see feed-forward neural net‐

works)
linearity limitations, 12
multilayer, 23-25
nonlinear, 13-15
recurrent (see recurrent neural networks

(RNNs))
training (see training neural networks)

neural style, 113-114
neural translation networks

data preparation for, 194-197
model evaluation, 203-216
model training, 198-203
process tutorial, 194-216
sequence analysis in, 189-216

Neural Turing Machines (NTMs), 219-228
attention-based memory access, 221-222
compared to Differentiable Neural Comput‐

ers (DNCs), 226-228
location-based mechanism, 225
memory-addressing mechanisms, 223-226

neurons
artificial, 8-9
biological, 7
hidden layers, 11-11
in human vision, 85
linear, 12, 17-19
nonlinear, 18, 22-23, 177
nonlinearities in, 13-15
RelU, 123
sigmoidal, 123

noise-contrastive estimation (NCE), 144
nonlinear neural networks, 13-15
nonlinear neurons, 18, 22-23, 177

O
one-hot vectors, 141
one_hot=False, 131
OpenAI Gym, 254
optimization, 6, 63-83

adaptive learning rate algorithms, 78-82
Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm, 78

280 | Index

conjugate gradient descent, 77
momentum-based, 74-77
strategies overview, 83

optimizers, 6
output gate, 181
output value, 22
output_logits, 202
output_projection flag, 210
overfitting, 29-30, 34-37

P
pack(), 241
padding sequences, 195-196
parameter vectors, 4-6

determining (see training)
part-of-speech (POS) tagging, 155-163, 172
perceptrons, 5
PGAgent(), 255-257
Pip, 41
pole-balancing, 248-249
pole-cart, 254-261
policies, 249
Policy Gradients, 254-261
policy learning, 253
POSDataset(), 160
pre-output vector, 233
precedence vector, 231
prediction network, 268, 269
predict_action(), 257
previous_losses, 199
principal component analysis (PCA), 118-120

compared to autoencoding, 130-133

Q
Q-learning, 261-274

Bellman Equation, 261
Deep Q-network (DQN) (see Deep Q-

network (DQN))
Q-function, 261, 262, 264
Q-values, 261-263

quadratic error surface, 19

R
random walk, 75
read modes, 232
read(), 242
recurrent neural networks (RNNs), 173-185

capturing attention in, 191-194

for machine translation, 189-216
sentiment analysis model, 185-188
and sequence analysis, 189-194
TensorFlow primitives for, 183-185
as turing machines (see Neural Turing

Machines (NTMs))
unrolling through time, 175
and vanishing gradients, 176-183

regularization, 34-35
reinforcement learning (RL), 245

Asynchronous Advantage Actor-Critic
(A3C), 274

Deep Q-network (DQN) (see Deep Q-
network (DQN))

explore-exploit dilemma, 251-253
OpenAI Gym and, 254
overview, 247-248
pole-balancing, 248-249
pole-cart, 254-261
policy learning versus value learning, 253
Q-learning, 261-274
UNsupervised REinforcement and Auxiliary

Learning (UNREAL), 275
value-learning, 261

restricted linear unit (ReLU) neurons, 14, 59,
123

reward prediction, 275
RMSProp, 80, 83

S
saddle points, 26, 69
sample_batch(), 269-270
scatter(), 133, 241
scikit-learn, 131
sentiment analysis, 185-188
seq2seq problems (see sequence analysis)
seq2seq.embedding_attention_seq2seq(), 207,

209
seq2seq.model_with_buckets, 208
seq2seq_f(), 207
seq2seq_model.Seq2SeqModel, 206-209
sequence analysis

beam search and global normalization,
168-171

dependency parsing, 164-168, 172
Differentiable Neural Computers (DNCs),

226-217
long short-term memory (LSTM) units,

178-183

Index | 281

neural translation networks, 194-216
neural turing machines, 219-226
overview, 153
part-of-speech tagging, 155-163, 172
recurrent neural networks and, 189-194
SyntaxNet, 168-170

sess.run(), 46, 47, 51, 56, 127, 133
session.run(), 205
shift weighting, 224
sigmoidal neurons, 13, 22-23, 123, 180
Skip-Gram model, 143-151, 190
skip-thought vector, 190
softmax function, 53, 61
softmax output layers, 15, 171
sparsity in autoencoders, 137
sparsity penalty, 140
spurious local minima, 66-69
state history, 265, 268
stateful deep learning models, 172-173
steepest descent, 77
step(), 201, 202, 203-204
stochastic gradient descent (SGD), 26, 254, 263
symbolic loops, 241-242
symbolic programming, 237
SyntaxNet, 168-170

T
t-Distributed Stochastic Neighbor Embedding

(t-SNE), 111, 151
tags_to_index dictionary, 160
tahn neurons, 13
target Q-network, 264, 268, 269
TensorArray, 240-242
TensorBoard, 58-59, 163, 187
TensorFlow, 39-62

AdaGrad and, 79
Adam optimization, 82
alternatives to, 40-41
approximate per-image whitening, 103
autoencoders in, 121-133
batch normalization in, 105
convolutions in, 97
Differentiable Neural Computer (DNC)

implementation, 237-242
installing, 41-42
logistic regression model in, 52-57
managing models over CPU and GPU,

51-52
momentum optimizer, 76

multilayer model in, 59-61
naming schemes, 49
noise-contrastive estimation (NCE) imple‐

mentation, 145
operations, 45
overview, 39-40
placeholders, 45-46, 48
primitives for building RNN models,

183-185
RMSProp, 80
sessions, 46-48
Skip-Gram architecture in, 146-151
string IDs, 51
variable scoping and sharing, 48-50
variables, creating and manipulating, 43-44

tensors, 39
test sets, 31-33
tf.AdamOptimizer, 257
tf.argmax(), 55
tf.assign, 44
tf.cast(), 55
tf.constant(), 51
tf.constant_initializer(), 49, 54, 60, 101, 105,

108
tf.control_dependencies(), 105
tf.equal(), 55
tf.float32, 43, 46, 49
tf.get_variable(), 49, 54, 60, 101, 105, 108, 146
tf.Graph(), 56
tf.histogram_summary(), 55
tf.identity(), 105
tf.image.per_image_whitening(), 103
tf.image.random_brightness(), 103
tf.image.random_contrast(), 103
tf.image.random_flip_left_right(), 103
tf.image.random_flip_up_down(), 103
tf.image.random_hue(), 103
tf.image.random_saturation(), 103
tf.image.transpose_image(), 103
tf.initialize_all_variables(), 44, 46, 56, 127
tf.initialize_variables(), 44
tf.log(), 54
tf.matmul, 46
tf.matmul(), 46, 48, 49, 51, 54, 108
tf.merge_all_summaries(), 56, 124
tf.nn.batch_norm_with_global_normaliza‐

tion(), 105
tf.nn.bias_add(), 108
tf.nn.conv2d(), 97, 101

282 | Index

tf.nn.dropout(), 102, 109
tf.nn.embedding_lookup(), 144, 146
tf.nn.max_pool, 101
tf.nn.moments(), 105
tf.nn.nce_loss(), 145, 146
tf.nn.relu(), 60, 101, 108
tf.nn.rnn_cell.BasicLSTMCell(), 183
tf.nn.rnn_cell.BasicRNNCell(), 183
tf.nn.rnn_cell.GRUCell(), 184
tf.nn.rnn_cell.LSTMCell(), 184
tf.nn.softmax(), 54
tf.ones, 43
tf.placeholder, 46
tf.placeholder(), 46, 49, 50, 56, 67, 124, 133
tf.random_crop(), 103
tf.random_normal, 43, 44
tf.random_normal_initializer(), 60, 101, 108
tf.random_uniform, 43, 46
tf.random_uniform(), 46, 48, 146
tf.random_uniform_initializer(), 49
tf.reduce_mean(), 55, 124
-tf.reduce_sum(), 54
tf.reshape(), 102, 109
tf.RNNCell
tf.scalar_summary(), 55, 123, 124
tf.Session(), 46, 51, 51, 56, 67, 127, 133
tf.slice(), 187
tf.sqrt(), 124
tf.squeeze(), 187
tf.train.AdagradOptimizer, 79
tf.train.AdamOptimizer(), 124
tf.train.ExponentialMovingAverage(), 105
tf.train.GradientDescentOptimizer(), 54, 55,

147
tf.train.Saver(), 56, 67, 124, 133
tf.train.SummaryWriter(), 55, 68, 127
tf.truncated_normal(), 43, 146
tf.Variable(), 46, 48, 56, 124
tf.variable_scope(), 49, 49, 60, 67, 68, 102, 109,

122, 124, 124, 133, 146, 146
tf.while_loop(), 241-242
tf.zeros(), 43, 46, 48, 146
tflearn, 185-186
Theano, 40-41

tokenization, 194
Torch, 40
training neural networks, 17-37

backpropagation, 23
batch gradient descent, 25
batch normalization and, 104-106
gradient descent (GD), 19-20, 22-23
minibatch gradient descent, 27
overfitting, 29-30, 34-37
stochastic gradient descent (SGD), 26
test sets, 31-33
validation sets, 31-33

training sets, 31-33
training(), 56, 124
train_writer.add_summary(), 127

U
unpack(), 242
UNsupervised REinforcement and Auxiliary

Learning (UNREAL), 275
usage vector, 229

V
validation sets, 31-33
validation(), 147
value iteration, 262
value learning, 253, 261
val_writer.add_summary(), 127
vanishing gradients, 176-183
variable-length inputs, analyzing, 153-154
var_list_opt, 67
var_list_rand, 67
vectorization, 238-240, 241
velocity-driven motion, 74

W
weight decay, 34
while loops, 199
whitening, 103
Word2Vec framework, 143-151
working memory, 220-221
write gate, 180
write(), 242

Index | 283

About the Author
Nikhil Buduma is the cofounder and chief scientist of Remedy, a San Francisco-
based company that is building a new system for data-driven primary healthcare. At
the age of 16, he managed a drug discovery laboratory at San Jose State University
and developed novel low-cost screening methodologies for resource-constrained
communities. By the age of 19, he was a two-time gold medalist at the International
Biology Olympiad. He later attended MIT, where he focused on developing large-
scale data systems to impact healthcare delivery, mental health, and medical research.
At MIT, he cofounded Lean On Me, a national nonprofit organization that provides
an anonymous text hotline to enable effective peer support on college campus and
leverages data to effect positive mental health and wellness outcomes. Today, Nikhil
spends his free time investing in hard technology and data companies through his
venture fund, Q Venture Partners, and managing a data analytics team for the Mil‐
waukee Brewers baseball team.

Colophon
The animal on the cover of Fundamentals of Deep Learning is a North Pacific crestfish
(Lophotus capellei), also known as the unicornfish. It’s part of the Lophotidae family
and lives in the deep waters of the Atlantic and Pacific oceans. Because of their seclu‐
sion from researchers, little is known about this fish. Some have been caught, how‐
ever, that are six feet in length.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Prerequisites and Objectives
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. The Neural Network
	Building Intelligent Machines
	The Limits of Traditional Computer Programs
	The Mechanics of Machine Learning
	The Neuron
	Expressing Linear Perceptrons as Neurons
	Feed-Forward Neural Networks
	Linear Neurons and Their Limitations
	Sigmoid, Tanh, and ReLU Neurons
	Softmax Output Layers
	Looking Forward

	Chapter 2. Training Feed-Forward Neural Networks
	The Fast-Food Problem
	Gradient Descent
	The Delta Rule and Learning Rates
	Gradient Descent with Sigmoidal Neurons
	The Backpropagation Algorithm
	Stochastic and Minibatch Gradient Descent
	Test Sets, Validation Sets, and Overfitting
	Preventing Overfitting in Deep Neural Networks
	Summary

	Chapter 3. Implementing Neural Networks in TensorFlow
	What Is TensorFlow?
	How Does TensorFlow Compare to Alternatives?
	Installing TensorFlow
	Creating and Manipulating TensorFlow Variables
	TensorFlow Operations
	Placeholder Tensors
	Sessions in TensorFlow
	Navigating Variable Scopes and Sharing Variables
	Managing Models over the CPU and GPU
	Specifying the Logistic Regression Model in TensorFlow
	Logging and Training the Logistic Regression Model
	Leveraging TensorBoard to Visualize Computation Graphs and Learning
	Building a Multilayer Model for MNIST in TensorFlow
	Summary

	Chapter 4. Beyond Gradient Descent
	The Challenges with Gradient Descent
	Local Minima in the Error Surfaces of Deep Networks
	Model Identifiability
	How Pesky Are Spurious Local Minima in Deep Networks?
	Flat Regions in the Error Surface
	When the Gradient Points in the Wrong Direction
	Momentum-Based Optimization
	A Brief View of Second-Order Methods
	Learning Rate Adaptation
	AdaGrad—Accumulating Historical Gradients
	RMSProp—Exponentially Weighted Moving Average of Gradients
	Adam—Combining Momentum and RMSProp

	The Philosophy Behind Optimizer Selection
	Summary

	Chapter 5. Convolutional Neural Networks
	Neurons in Human Vision
	The Shortcomings of Feature Selection
	Vanilla Deep Neural Networks Don’t Scale
	Filters and Feature Maps
	Full Description of the Convolutional Layer
	Max Pooling
	Full Architectural Description of Convolution Networks
	Closing the Loop on MNIST with Convolutional Networks
	Image Preprocessing Pipelines Enable More Robust Models
	Accelerating Training with Batch Normalization
	Building a Convolutional Network for CIFAR-10
	Visualizing Learning in Convolutional Networks
	Leveraging Convolutional Filters to Replicate Artistic Styles
	Learning Convolutional Filters for Other Problem Domains
	Summary

	Chapter 6. Embedding and Representation Learning
	Learning Lower-Dimensional Representations
	Principal Component Analysis
	Motivating the Autoencoder Architecture
	Implementing an Autoencoder in TensorFlow
	Denoising to Force Robust Representations
	Sparsity in Autoencoders
	When Context Is More Informative than the Input Vector
	The Word2Vec Framework
	Implementing the Skip-Gram Architecture
	Summary

	Chapter 7. Models for Sequence Analysis
	Analyzing Variable-Length Inputs
	Tackling seq2seq with Neural N-Grams
	Implementing a Part-of-Speech Tagger
	Dependency Parsing and SyntaxNet
	Beam Search and Global Normalization
	A Case for Stateful Deep Learning Models
	Recurrent Neural Networks
	The Challenges with Vanishing Gradients
	Long Short-Term Memory (LSTM) Units
	TensorFlow Primitives for RNN Models
	Implementing a Sentiment Analysis Model
	Solving seq2seq Tasks with Recurrent Neural Networks
	Augmenting Recurrent Networks with Attention
	Dissecting a Neural Translation Network
	Summary

	Chapter 8. Memory Augmented Neural Networks
	Neural Turing Machines
	Attention-Based Memory Access
	NTM Memory Addressing Mechanisms
	Differentiable Neural Computers
	Interference-Free Writing in DNCs
	DNC Memory Reuse
	Temporal Linking of DNC Writes
	Understanding the DNC Read Head
	The DNC Controller Network
	Visualizing the DNC in Action
	Implementing the DNC in TensorFlow
	Teaching a DNC to Read and Comprehend
	Summary

	Chapter 9. Deep Reinforcement Learning
	Deep Reinforcement Learning Masters Atari Games
	What Is Reinforcement Learning?
	Markov Decision Processes (MDP)
	Policy
	Future Return
	Discounted Future Return

	Explore Versus Exploit
	Policy Versus Value Learning
	Policy Learning via Policy Gradients

	Pole-Cart with Policy Gradients
	OpenAI Gym
	Creating an Agent
	Building the Model and Optimizer
	Sampling Actions
	Keeping Track of History
	Policy Gradient Main Function
	PGAgent Performance on Pole-Cart

	Q-Learning and Deep Q-Networks
	The Bellman Equation
	Issues with Value Iteration
	Approximating the Q-Function
	Deep Q-Network (DQN)
	Training DQN
	Learning Stability
	Target Q-Network
	Experience Replay
	From Q-Function to Policy
	DQN and the Markov Assumption
	DQN’s Solution to the Markov Assumption
	Playing Breakout wth DQN
	Building Our Architecture
	Stacking Frames
	Setting Up Training Operations
	Updating Our Target Q-Network
	Implementing Experience Replay
	DQN Main Loop
	DQNAgent Results on Breakout

	Improving and Moving Beyond DQN
	Deep Recurrent Q-Networks (DRQN)
	Asynchronous Advantage Actor-Critic Agent (A3C)
	UNsupervised REinforcement and Auxiliary Learning (UNREAL)

	Summary

	Index
	About the Author
	Colophon

